Development of a metabolomics and machine learning based high-throughput screening platform for data-driven drug discovery
开发基于代谢组学和机器学习的高通量筛选平台,用于数据驱动的药物发现
基本信息
- 批准号:10343786
- 负责人:
- 金额:$ 87.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAutoimmuneAutomationBiologicalBiological AssayBiological SciencesCapitalCaringCell LineCellsChemicalsClinicalClustered Regularly Interspaced Short Palindromic RepeatsCompanionsComplexComputing MethodologiesCouplingDataData AnalysesData SetDevelopmentDimensionsDiseaseDoseDrug usageEmerging TechnologiesEvaluationExposure toFDA approvedFundingGene ExpressionGenerationsGeneticGrantIn VitroInstitutesInvestmentsKnock-outLibrariesMCF7 cellMachine LearningMapsMeasuresMetabolicMetabolic dysfunctionMolecular ProfilingNon-Insulin-Dependent Diabetes MellitusParkinson DiseasePathogenesisPathway interactionsPatientsPharmaceutical PreparationsPhasePhenotypePhysiologicalPlasmaPlayPre-Clinical ModelPrivatizationPropertyProteinsRare DiseasesRheumatoid ArthritisRoleSamplingSeedsSignal TransductionStatistical ModelsTechnologyTimeTimeLineTranscriptbasechemical geneticscomputerized toolscostdata complexitydrug developmentdrug discoverydrug mechanismdrug repurposingfollow-uphigh throughput screeningin vitro Modelinsulin sensitizing drugsinterestmetabolomicsmolecular phenotypepatient advocacy grouppre-clinicalprogramsrare genetic disorderresponsescreeningsmall moleculesuccesstraittranscriptomics
项目摘要
Project Summary
High-throughput omics technologies allow for measuring various biomolecules comprehensively and over the
past decade have become exponentially less expensive. Coupling these emerging technologies with automation
approaches and the phenotypic-based drug discovery paradigm allows for data-driven drug discovery (D4). D4
focuses on a complete cellular readout, quantitatively measuring 100s to 100,000s of biomolecules or cellular
features, rather than focusing on a single protein, pathway, or physiological trait. The complexity of this data
requires computational tools for proper analysis and interpretation. In Phase I of this proposal, we combined the
dual strengths of experts in LC-MS/MS based metabolomics (Omix Technologies) with leaders in metabolomics
data analysis (Sinopia Biosciences) to develop a metabolomics based high-throughput screening platform. We
screened ~250 FDA approved small molecules from a broad range of drug classes on two cell lines. This dataset
was compared to a matching dataset from the pioneering project for D4, the Connectivity Map, which is a
transcriptomics screening and query platform for drug characterization, discovery, and repositioning. In Phase I,
we observed that from both a technical and biological utility standpoint, the metabolomics data provided an
orthogonal dataset with signal fidelity, sensitivity, and relevance to compound properties comparable to or
exceeding the Connectivity Map. Further, we saw high concordance of plasma metabolite changes in type 2
diabetes and rheumatoid arthritis patients with in vitro metabolite changes of related drugs used for those
indications. Thus, these results suggest that a metabolomics based high-throughput screening platform is not
only viable as a complementary dataset to the Connectivity Map, but that metabolomics data can even play a
primary role in drug discovery. In this Phase II proposal, we will focus on profiling chemical and genetic
perturbations in vitro to further demonstrate the power of the platform and identify commercial opportunities for
treating genetically defined rare diseases. We will expand data generation to ~3300 bioactive compounds across
three cell lines. Further, we will profile 50 genetic knockouts on those three cell lines to model in vitro the
associated rare diseases. Using Sinopia’s platform, we will select compounds for follow-up evaluation to identify
candidates that correct for metabolic dysregulations seen in those rare diseases. Successful in vitro programs
will aid in seeding of an early stage discovery pipeline that will be advanced through funding by private
investment, patient advocacy groups, and additional federal grants.
项目摘要
高通量组学技术允许全面地测量各种生物分子,
在过去的十年里,成本已经成倍下降。将这些新兴技术与自动化相结合
方法和基于表型的药物发现范式允许数据驱动的药物发现(D4)。D4
专注于完整的细胞读数,定量测量100到100,000个生物分子或细胞
功能,而不是专注于单一的蛋白质,途径或生理特性。这些数据的复杂性
需要计算工具进行适当的分析和解释。在本提案的第一阶段,
LC-MS/MS代谢组学专家(Omix Technologies)与代谢组学领导者的双重优势
数据分析(Sinopia Biosciences),以开发基于代谢组学的高通量筛选平台。我们
在两种细胞系上筛选了约250种FDA批准的小分子药物。此数据集
与D4的开创性项目中的匹配数据集进行了比较,即连通性地图,
转录组学筛选和查询平台,用于药物表征、发现和重新定位。在第一阶段,
我们观察到,从技术和生物实用性的角度来看,代谢组学数据提供了一个
正交数据集,信号保真度,灵敏度和化合物性质的相关性与或
超过了连通图。此外,我们发现2型糖尿病患者的血浆代谢物变化具有高度一致性,
糖尿病和类风湿性关节炎患者体外代谢产物变化的相关药物使用情况
迹象。因此,这些结果表明,代谢组学为基础的高通量筛选平台,
作为连接图的补充数据集,代谢组学数据甚至可以发挥重要作用。
在药物发现中的主要作用。在第二阶段的提案中,我们将重点关注化学和遗传分析,
在体外扰动,以进一步证明该平台的力量,并确定商业机会,
治疗基因定义的罕见疾病我们将把数据生成扩展到约3300种生物活性化合物,
三个细胞系此外,我们将在这三种细胞系上分析50种基因敲除,以在体外模拟
相关的罕见疾病。利用Sinopia的平台,我们将选择化合物进行后续评估,
这些候选人可以纠正这些罕见疾病中出现的代谢失调。成功的体外项目
将帮助播种早期阶段的发现管道,这将通过私人资助来推进。
投资、患者权益团体和额外的联邦赠款。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aarash Bordbar其他文献
Aarash Bordbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aarash Bordbar', 18)}}的其他基金
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10913244 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10324284 - 财政年份:2021
- 资助金额:
$ 87.16万 - 项目类别:
Preclinical development of a novel therapeutic for Parkinson's disease
帕金森病新型疗法的临床前开发
- 批准号:
10619432 - 财政年份:2021
- 资助金额:
$ 87.16万 - 项目类别:
Developing a systems biology platform for predicting, preventing, and treating drug side effects
开发用于预测、预防和治疗药物副作用的系统生物学平台
- 批准号:
9922312 - 财政年份:2016
- 资助金额:
$ 87.16万 - 项目类别:
Improving safety and efficacy of platelet transfusion through systems biology
通过系统生物学提高血小板输注的安全性和有效性
- 批准号:
9347295 - 财政年份:2015
- 资助金额:
$ 87.16万 - 项目类别:
Improving safety and efficacy of platelet transfusion through systems biology
通过系统生物学提高血小板输注的安全性和有效性
- 批准号:
8977072 - 财政年份:2015
- 资助金额:
$ 87.16万 - 项目类别:
Improving red blood cell transfusion through systems biology
通过系统生物学改善红细胞输注
- 批准号:
8714738 - 财政年份:2014
- 资助金额:
$ 87.16万 - 项目类别:
Improving red blood cell transfusion through systems biology
通过系统生物学改善红细胞输注
- 批准号:
9049084 - 财政年份:2014
- 资助金额:
$ 87.16万 - 项目类别:
相似国自然基金
Autoimmune diseases therapies: variations on the microbiome in rheumatoid arthritis
- 批准号:31171277
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Study of Neuropilin-1 as a potential marker of self-reactive Th cells in autoimmune neuroinflammation
Neuropilin-1 作为自身免疫性神经炎症中自身反应性 Th 细胞潜在标志物的研究
- 批准号:
24K10278 - 财政年份:2024
- 资助金额:
$ 87.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shared and distinct genetic architecture of autoimmune and hormonal alopecias
自身免疫性脱发和激素性脱发的共同和独特的遗传结构
- 批准号:
MR/X030466/1 - 财政年份:2024
- 资助金额:
$ 87.16万 - 项目类别:
Research Grant
Autoantibodies and antibody-secreting cells in neurological autoimmune diseases: from biology to therapy
神经性自身免疫性疾病中的自身抗体和抗体分泌细胞:从生物学到治疗
- 批准号:
479128 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Operating Grants
BIOlogic drug safety and effectiveness interNational pharmacoepidemiologIC study in pregnant women with autoimmune disorders and asthma and their children (BIONIC)
患有自身免疫性疾病和哮喘的孕妇及其子女的生物药物安全性和有效性国际药物流行病学研究(BIONIC)
- 批准号:
493526 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Operating Grants
Environmental factors and risk of autoimmune rheumatic disease incidence and serology
环境因素和自身免疫性风湿病发病率和血清学的风险
- 批准号:
498306 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Operating Grants
Effects of maternal immune activation on autoimmune diseases in offsprings
母体免疫激活对后代自身免疫性疾病的影响
- 批准号:
23H02155 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
PTSD and Autoimmune Disease: Towards Causal Effects, Risk Factors, and Mitigators
创伤后应激障碍 (PTSD) 和自身免疫性疾病:因果效应、危险因素和缓解措施
- 批准号:
10696671 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Build to LEAD – Building partnerships to Link the Exposome to Autoimmune Disease
构建引领 — 建立合作伙伴关系,将暴露组与自身免疫性疾病联系起来
- 批准号:
10871040 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
Functional consequences of intergenic autoimmune disease risk variants
基因间自身免疫性疾病风险变异的功能后果
- 批准号:
10655161 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别:
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
- 批准号:
10788032 - 财政年份:2023
- 资助金额:
$ 87.16万 - 项目类别: