Project 1
项目1
基本信息
- 批准号:10349751
- 负责人:
- 金额:$ 20.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsBig DataCharacteristicsChemical ExposureChemicalsClassificationCollaborationsCommerceComplexComputing MethodologiesCoupledDataData AnalysesDatabasesDefectDevelopmentDisastersEmergency SituationEnvironmental Engineering technologyEnvironmental ImpactEnvironmental MonitoringEnvironmental Risk FactorEnvironmental ScienceEvaluationEventExposure toFundingGroupingHazardous ChemicalsHazardous SubstancesHealthHumanIn VitroInvestigationLibrariesLiquid ChromatographyLocationMachine LearningMass Spectrum AnalysisMeasurementMeasuresModelingMolecularParentsPhaseProcessPropertyResearchResolutionRiskSamplingSampling StudiesScienceSolidSpecific qualifier valueSpectrometryStatistical Data InterpretationStructureSuperfundTestingTimeToxicologyTrainingTranslationsWaterWorkXenobioticsanalytical methodbasechemical spillcheminformaticscloud basedcommunity engagementcomputerized data processingdata disseminationdata managementdetection methodenvironmental chemicalexperiencehands-on learningin vivoinstrumentinstrumentationinterestion mobilitymachine learning algorithmnovelorgan on a chippublic databaseresponsescreeningsoil samplingstemtooltrendvolatile organic compound
项目摘要
Project 1 Abstract
The comprehensive assessment of hazardous substances in complex environmental samples is essential in
understanding the “environmental exposome” and identifying potential human health and environmental risks.
Although targeted analyses are commonly used to measure between 10 and 100 specific substances per study,
their precise parameters and limited coverage are not suitable for evaluating other potentially hazardous
substances that may be present in the samples. This limitation has showcased the importance of untargeted
measurements as hundreds of new chemicals are being introduced annually that need to be assessed. Since
untargeted analyses can focus on all detected features, they are able to evaluate those with statistical
significance between sample type and location, in addition to features with extremely high abundance. The
information from the untargeted studies therefore provides the evaluation of novel and legacy hazardous
substances in addition to their metabolites, intermediates and degradants which can be more hazardous than
the parent compounds. However, untargeted measurements are greatly challenged by how to optimize
instruments for broad characterization and then how to analyze all of the “big” data that are generated by the
new analytical methods. Thus, both analytical and computational developments are necessary. By combining
ion mobility spectrometry (IMS)-derived structural information, mass spectrometry (MS)-derived high-resolution
m/z measurements and new data processing algorithms, we aim to create a uniform workflow for evaluation of
complex environmental mixtures in the untargeted studies of samples obtained before, during and after
environmental emergencies. To enable comprehensive analytical characterization, we will couple the
multidimensional IMS-MS analyses with steps including sample concentration, extraction and liquid
chromatography (LC) separations to allow an in-depth characterization of the mixtures. The information obtained
from the untargeted IMS-MS and LC-IMS-MS studies will include molecular properties such as m/z, Kendrick
Mass Defect (KMD), retention time (RT) and collision cross section (CCS). As these values have shown utility in
targeted studies for molecular classification, they will be combined with our targeted library of >3,000
environmental chemicals from the past funding period and processed with cheminformatics and machine
learning algorithms to annotate and classify the unknown features from the untargeted studies. We will also
utilize both the targeted and untargeted studies to enable better disaster-related evaluation of potential chemical
exposures by creating a list containing thousands of hazardous substances for rapid characterization with
automated solid phase sample cleanup and IMS-MS. This automated SPE-IMS-MS platform will provide 10 s
sample-to-sample throughput and when coupled with cloud-based data assessment, it will enable the rapid
chemical analyses of complex environmental samples from disaster situations that may involve chemical spills.
项目1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erin S Baker其他文献
Erin S Baker的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erin S Baker', 18)}}的其他基金
Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
- 批准号:
10703408 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Increasing the Coverage, Sensitivity and Specificity of Rapid Lipidomic Measurements
提高快速脂质组学测量的覆盖范围、灵敏度和特异性
- 批准号:
10445729 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Understanding the role of lipids in structure and function of membrane proteins
了解脂质在膜蛋白结构和功能中的作用
- 批准号:
10413702 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Increasing the Coverage, Sensitivity and Specificity of Rapid Lipidomic Measurements
提高快速脂质组学测量的覆盖范围、灵敏度和特异性
- 批准号:
10709875 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10115845 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Center for Environmental and Health Effects of PFAS
PFAS 环境与健康影响中心
- 批准号:
10558140 - 财政年份:2020
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
8416845 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
9066675 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
Platform Providing Increased Throughput, Sensitivity and Specificity for Metabolo
为代谢提供更高通量、灵敏度和特异性的平台
- 批准号:
8857441 - 财政年份:2012
- 资助金额:
$ 20.72万 - 项目类别:
相似海外基金
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Large Systems and Big Data: Models, Tools, Analysis, and Algorithms
大型系统和大数据:模型、工具、分析和算法
- 批准号:
RGPIN-2020-04075 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
- 批准号:
RGPIN-2017-05785 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Novel Learning-Based Visual Algorithms and Fusion Methods for High-Dimensional/Multi-Modality Big Data
基于学习的新型高维/多模态大数据视觉算法和融合方法
- 批准号:
RGPIN-2022-02948 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2022
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
NCS-FO: Connectome mapping algorithms with application to community services for big data neuroscience
NCS-FO:连接组映射算法及其应用于大数据神经科学社区服务
- 批准号:
2203524 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Standard Grant
Big Data Analytics: Optimization Models and Algorithms with Applications in Smart Food Supply Chains and Networks
大数据分析:优化模型和算法在智能食品供应链和网络中的应用
- 批准号:
RGPIN-2020-06792 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual
Exploring Novel Mathematical Models and Efficient Algorithms to Discover Periodic Spatial Patterns in Irregular Spatiotemporal Big Data
探索新颖的数学模型和高效算法以发现不规则时空大数据中的周期性空间模式
- 批准号:
21K12034 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comprehensive study of big data clustering algorithms
大数据聚类算法综合研究
- 批准号:
571110-2018 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
(Re)designing Clustering Algorithms for Big Data
(重新)设计大数据聚类算法
- 批准号:
RGPIN-2017-05617 - 财政年份:2021
- 资助金额:
$ 20.72万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




