Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10349759
- 负责人:
- 金额:$ 23.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAffectAlgorithmsAnalysis of VarianceAreaBenchmarkingBioinformaticsBiologicalCalibrationChemical ExposureChemicalsChildhoodClassificationCodeCollaborationsCommunitiesComplexComputer AnalysisComputer softwareDataData AnalysesData AnalyticsData CollectionData Management ResourcesData ScienceData Science CoreData SetDepositionDescriptorDetectionDimensionsDisastersDocumentationEducational workshopElementsEmergency SituationEnsureEnvironmental HazardsEvaluationEventExperimental DesignsExposure toFAIR principlesFrequenciesFundingGenerationsHazardous SubstancesHealthHumanHuman ResourcesIn VitroIndividualInfrastructureKnowledgeLibrariesLungMachine LearningMass Spectrum AnalysisMathematicsMeasurementMeasuresMetadataMethodologyMethodsModelingMultivariate AnalysisOnline SystemsOutcomeOutputPatternPerformancePopulationPregnancyProblem SolvingProceduresProtocols documentationPublicationsQuality ControlRecipeRegression AnalysisResearchResearch PersonnelResearch Project GrantsRiskSamplingScienceSecureServicesSpectrometryStatistical Data InterpretationStatistical MethodsSuperfundSupervisionSystemTechniquesTestingTexasToxicokineticsTrainingTranslatingTranslational ResearchUniversitiesWorkanalysis pipelinebasecommunity engagementcomputational platformcytokinedata accessdata disseminationdata managementdata qualitydata repositorydata sharingdata standardsdata visualizationdetection methodexperienceexposure pathwayfeature selectioninsightinteroperabilityion mobilitymembernonlinear regressionnovelorgan on a chippredictive modelingquality assurancerespiratoryresponsescreeningtooltoxicanttranscriptomics
项目摘要
Data Management & Analysis Core (DMAC) ABSTRACT
The Texas A&M University Superfund Research Center aims to develop descriptive models and tools that can
predict the possible hazardous outcomes of chemical exposure during environmental emergencies while
providing powerful solutions that can mitigate their negative effects on human health. The Data Management &
Analysis Core (DMAC) is one of the key components of the Center that will support all projects and cores in their
data management, analysis, quality control needs. Directed by Dr. Efstratios N. Pistikopoulos and in collaboration
with co-Investigators Dr. Fred A. Wright, Dr. Lan Zhou, and Dr. Candice Brinkmeyer-Langford, the DMAC will
provide a number of essential services to the Center’s researchers by assisting them is achieving key
environmental and biomedical outcomes under four specific aims: (i) providing a new platform for data
management and sharing across the Center, (ii) applying best-practice analysis methods to Center data, (iii)
developing new methods that are urgently needed to solve the problems posed in the Projects, and (iv)
maintaining research and data quality control protocols for the Center. The DMAC will establish a data universe
(“dataverse”) for data sharing, integration, and collaboration. The “dataverse” will be used to manage Center
datasets where each component will securely deposit and access data through a web-based platform and ensure
Center generated data comply with Findable, Accessible, Interoperable, and Reusable (FAIR) principles. The
DMAC will also provide additional assistance in developing and utilizing advanced data science methodologies
for translating raw experimental data into actionable insights and predictive models for all projects. Project 1 will
perform and optimize ion mobility spectrometry and mass spectrometry analyses of complex environmental
samples; DMAC will provide guidance on geospatial sampling, feature selection, and classification analysis.
Project 2 will develop in vitro pediatric lung model to characterize respiratory risks from VOCs; DMAC will perform
concentration-response modeling, nonlinear, and spatial modeling techniques to evaluate the respiratory risks
from ambient VOCs. Project 3 will address pregnancy risk implications of exposures to hazardous substances
by developing a feto-maternal interface organ-on-a-chip model; DMAC will provide expertise in hypothesis
testing, regression analysis, and ANOVA testing for analyzing proinflammatory cytokine measures. Project 4 will
utilize in vitro cultures and reverse toxicokinetic analysis to characterize hazards of environmental mixtures;
DMAC will provide service in analyzing high-content screening data, high-throughput transcriptomics data, and
will perform population variability analyses. Project 5 will study the mitigation of adverse health effects of
chemicals through broad-acting sorption materials; DMAC will provide services for experimental design and
statistical testing. The DMAC, working in concert with the Research Experience & Training Coordination Core,
will provide data science training workshops for Center personnel. Finally, DMAC will develop Quality Assurance
Project Plans to cover all aspects of quality assurance and control for all Center components.
数据管理与分析核心(DMAC
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efstratios Pistikopoulos其他文献
Efstratios Pistikopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efstratios Pistikopoulos', 18)}}的其他基金
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 23.43万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 23.43万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 23.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 23.43万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 23.43万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 23.43万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 23.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 23.43万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 23.43万 - 项目类别:
Studentship
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 23.43万 - 项目类别:
Research Fellowships














{{item.name}}会员




