Data Management and Analysis Core
数据管理与分析核心
基本信息
- 批准号:10707480
- 负责人:
- 金额:$ 22.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-20 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAffectAlgorithmsAnalysis of VarianceAreaBenchmarkingBioinformaticsBiologicalCalibrationChemical ExposureChemicalsChildhoodClassificationCodeCollaborationsCommunitiesComplexComputer AnalysisComputer softwareDataData AnalysesData AnalyticsData CollectionData Coordinating CenterData Management ResourcesData ScienceData Science CoreData SetDepositionDescriptorDetectionDimensionsDisastersDocumentationEducational workshopElementsEmergency SituationEnsureEnvironmental HazardsEvaluationEventExperimental DesignsExposure toFAIR principlesFrequenciesFundingGenerationsHazardous SubstancesHealthHumanHuman ResourcesIn VitroIndividualInflammatoryInfrastructureKnowledgeLibrariesLungMachine LearningMass Spectrum AnalysisMathematicsMeasurementMeasuresMetadataMethodologyMethodsModelingOnline SystemsOutcomeOutputPatternPerformancePopulationPregnancyProceduresProtocols documentationPublicationsQuality ControlRecipeRegression AnalysisResearchResearch PersonnelResearch Project GrantsRiskSamplingScienceSecureServicesSpectrometryStatistical Data InterpretationStatistical MethodsSuperfundSystemTechniquesTestingTexasToxicokineticsTrainingTranslatingTranslational ResearchUniversitiesWorkcommunity engagementcomplex datacomputational platformcytokinedata accessdata disseminationdata managementdata qualitydata repositorydata sharingdata standardsdata visualizationdetection methodexperienceexposure pathwayfeature selectioninsightinteroperabilityion mobilitymembernonlinear regressionnovelorgan on a chippredictive modelingquality assurancerespiratoryresponsescreeningshared repositorytooltoxicanttranscriptomicsweb platform
项目摘要
Data Management & Analysis Core (DMAC) ABSTRACT
The Texas A&M University Superfund Research Center aims to develop descriptive models and tools that can
predict the possible hazardous outcomes of chemical exposure during environmental emergencies while
providing powerful solutions that can mitigate their negative effects on human health. The Data Management &
Analysis Core (DMAC) is one of the key components of the Center that will support all projects and cores in their
data management, analysis, quality control needs. Directed by Dr. Efstratios N. Pistikopoulos and in collaboration
with co-Investigators Dr. Fred A. Wright, Dr. Lan Zhou, and Dr. Candice Brinkmeyer-Langford, the DMAC will
provide a number of essential services to the Center’s researchers by assisting them is achieving key
environmental and biomedical outcomes under four specific aims: (i) providing a new platform for data
management and sharing across the Center, (ii) applying best-practice analysis methods to Center data, (iii)
developing new methods that are urgently needed to solve the problems posed in the Projects, and (iv)
maintaining research and data quality control protocols for the Center. The DMAC will establish a data universe
(“dataverse”) for data sharing, integration, and collaboration. The “dataverse” will be used to manage Center
datasets where each component will securely deposit and access data through a web-based platform and ensure
Center generated data comply with Findable, Accessible, Interoperable, and Reusable (FAIR) principles. The
DMAC will also provide additional assistance in developing and utilizing advanced data science methodologies
for translating raw experimental data into actionable insights and predictive models for all projects. Project 1 will
perform and optimize ion mobility spectrometry and mass spectrometry analyses of complex environmental
samples; DMAC will provide guidance on geospatial sampling, feature selection, and classification analysis.
Project 2 will develop in vitro pediatric lung model to characterize respiratory risks from VOCs; DMAC will perform
concentration-response modeling, nonlinear, and spatial modeling techniques to evaluate the respiratory risks
from ambient VOCs. Project 3 will address pregnancy risk implications of exposures to hazardous substances
by developing a feto-maternal interface organ-on-a-chip model; DMAC will provide expertise in hypothesis
testing, regression analysis, and ANOVA testing for analyzing proinflammatory cytokine measures. Project 4 will
utilize in vitro cultures and reverse toxicokinetic analysis to characterize hazards of environmental mixtures;
DMAC will provide service in analyzing high-content screening data, high-throughput transcriptomics data, and
will perform population variability analyses. Project 5 will study the mitigation of adverse health effects of
chemicals through broad-acting sorption materials; DMAC will provide services for experimental design and
statistical testing. The DMAC, working in concert with the Research Experience & Training Coordination Core,
will provide data science training workshops for Center personnel. Finally, DMAC will develop Quality Assurance
Project Plans to cover all aspects of quality assurance and control for all Center components.
数据管理与分析核心(DMAC)摘要
德克萨斯州A&M大学超级基金研究中心旨在开发可描述性模型和工具
预测环境紧急情况下化学暴露的可能危险结果
提供强大的解决方案,可以减轻其对人类健康的负面影响。数据管理和
分析核心(DMAC)是该中心的关键组成部分之一,它将支持其所有项目和核心
数据管理,分析,质量控制需求。 Efstratios N. Pistikopoulos博士和合作
DMAC与共同研究员Fred A. Wright博士,Lan Zhou博士和Candice Brinkmeyer-Langford博士一起
通过协助他们为中心的研究人员提供许多基本服务正在实现关键
环境和生物医学结果以四个具体目的:(i)为数据提供新的平台
(ii)在中心进行管理和共享,(ii)将最佳实践分析方法用于中心数据,(iii)
开发迫切需要解决项目中问题的新方法,(iv)
维持中心的研究和数据质量控制协议。 DMAC将建立数据宇宙
(“数据”)用于数据共享,集成和协作。 “数据词”将用于管理中心
每个组件将通过基于Web的平台安全存入和访问数据的数据集并确保
中心生成的数据符合可发现的,可访问的,可互操作的和可重复使用的(公平)原则。这
DMAC还将为开发和使用高级数据科学方法提供其他帮助
将原始的实验数据转化为所有项目的可行见解和预测模型。项目1将
进行并优化复杂环境的离子迁移率和质谱分析
样品; DMAC将为地理空间采样,特征选择和分类分析提供指导。
项目2将开发体外的小儿肺模型,以表征VOC的呼吸道风险; DMAC将执行
浓度响应建模,非线性和空间建模技术,以评估呼吸风险
来自环境VOC。项目3将解决对危险物质暴露的妊娠风险的影响
通过开发feto-tromnal界面器官芯片模型; DMAC将在假设方面提供专业知识
测试,回归分析和ANOVA测试进行分析促炎性细胞因子测量。项目4 Will
利用体外培养物并反向毒性分析来表征环境混合物的危害;
DMAC将在分析的高通用筛选数据,高通量转录组学数据和
将执行人口变异性分析。项目5将研究缓解不良健康影响的
通过广泛的吸附材料化学物质; DMAC将为实验设计提供服务,
统计测试。 DMAC与研究经验与培训协调核心合作,
将为中心人员提供数据科学培训研讨会。最后,DMAC将建立质量保证
项目计划涵盖所有中心组件的质量保证和控制的各个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Efstratios Pistikopoulos其他文献
Efstratios Pistikopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Efstratios Pistikopoulos', 18)}}的其他基金
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
跨期决策中偏好反转的影响因素及作用机制:采用体验式实验范式的综合研究
- 批准号:72271190
- 批准年份:2022
- 资助金额:43 万元
- 项目类别:面上项目
农民合作社视角下组织支持、个人规范对农户化肥农药减量增效技术采用行为的影响机制研究
- 批准号:72103054
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用磁共振技术研究帕金森病蓝斑和黑质神经退变及其对大脑结构功能的影响
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
- 批准号:
10752930 - 财政年份:2024
- 资助金额:
$ 22.27万 - 项目类别:
Regulation of human tendon development and regeneration
人体肌腱发育和再生的调节
- 批准号:
10681951 - 财政年份:2023
- 资助金额:
$ 22.27万 - 项目类别:
Implementation and Implications of Sickle Cell Trait Screening in the NCAA
镰状细胞性状筛查在 NCAA 中的实施及其意义
- 批准号:
10842764 - 财政年份:2023
- 资助金额:
$ 22.27万 - 项目类别:
Optimizing integration of veterinary clinical research findings with human health systems to improve strategies for early detection and intervention
优化兽医临床研究结果与人类健康系统的整合,以改进早期检测和干预策略
- 批准号:
10764456 - 财政年份:2023
- 资助金额:
$ 22.27万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 22.27万 - 项目类别: