Protein engineering for the development of novel antimicrobial agents
用于开发新型抗菌剂的蛋白质工程
基本信息
- 批准号:10351839
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-22 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsAntimicrobial ResistanceBiologyCessation of lifeChemistryChemotaxisClinicalCombined Modality TherapyCommunicable DiseasesComplexDefensinsDerivation procedureDevelopmentEngineeringEnvironmentFaceFundingGeneral HospitalsGenomicsGoalsGram-Negative BacteriaHeadHomeHumanHuman EngineeringHuman bodyImmuneImmune responseImmune systemImmunologyInfectionInstitutesK-Series Research Career ProgramsLeadLibrariesLifeLipopolysaccharidesMalignant NeoplasmsMammalian CellMapsMass Spectrum AnalysisMassachusettsMediatingMembraneMentorsMicrobeMicrobiologyNatural ProductsPathogenesisPeptide SynthesisPhagocytesPhenotypePropertyProtein EngineeringProteomeProteomicsResearchResearch TrainingResistanceResourcesScientistSourceStructureStructure-Activity RelationshipTechnologyTestingTherapeuticTherapeutic Human ExperimentationToxic effectTrainingUnited StatesWorkantimicrobialantimicrobial drugantimicrobial peptideantimicrobial peptide LL-37attributable mortalitybasebeta-Defensinscareercathelicidincytotoxicitydrug developmentexperiencegenetic approachimmunoregulationinsightmortalitynovelnovel antibiotic classpathogenpre-clinicalprogramsrational designrecruitsmall molecule
项目摘要
PROJECT SUMMARY
Antimicrobial resistance increasingly threatens our ability to effectively treat a wide range of infections. Absent
the development of novel antibiotics, humanity faces the prospect of a return to the pre-antibiotic era with
associated mortality to rival that of cancer. One promising approach for the development of novel antibiotics is
the engineering of antimicrobial peptides (AMPs), miniproteins of diverse structural classes made by all
branches of life to defend against microbes. In particular, the engineering of human AMPs presents the
opportunity to leverage both the antimicrobial and immunomodulatory properties of these AMPs to treat
infections. Under the guidance of mentors at the Massachusetts Institute of Technology (MIT), Massachusetts
General Hospital (MGH), and the Broad Institute, the candidate has adapted fast flow chemistry for the rapid
synthesis and engineering of human AMPs, and in this proposal he seeks to extend these efforts through two
aims. Aim 1 defines the structure-activity relationships underlying the mechanisms of gram-negative killing and
phagocyte chemotaxis mediated by three human AMPs of distinct structural types, while Aim 2 extends these
lines of inquiry to the development of derivatives of LL-37 as lead therapeutics. Together, these aims lay the
groundwork for extension of the studies described to additional facets of AMP biology and engineering as well
as preclinical applications as the candidate transitions to independence.
The candidate’s research background consists of doctoral training in innate immunology against retroviral
infection combined with clinical training in infectious diseases. This proposal for a K08 Mentored Clinical
Scientist Research Career Development Award will enable the candidate to complete additional hands-on and
didactic training in protein engineering and omics technologies over a five-year period toward the goal of
establishing an independent, R01-funded research program applying these approaches to the ongoing study
and development of human AMPs as novel antibiotics. In this effort, he is guided by primary mentors with
expertise in protein engineering and mass spectrometry as well as bacterial pathogenesis and genomic
technologies, which is further supported by an advisory board with deep expertise in microbiology,
immunology, proteomics, AMP mechanisms of action, and drug development as well as the extensive
resources of MIT, MGH, and the Broad Institute.
项目摘要
抗生素耐药性日益威胁着我们有效治疗各种感染的能力。缺席
随着新型抗生素的开发,人类面临着回到前抗生素时代的前景,
与癌症的死亡率相当。开发新型抗生素的一种有前途的方法是
抗微生物肽(AMP)的工程化,各种结构类别的微蛋白,
抵御微生物的能力。特别地,人AMP的工程化呈现了
利用这些AMP的抗微生物和免疫调节特性来治疗
感染.在马萨诸塞州的马萨诸塞州理工学院(MIT)导师的指导下,
总医院(MGH)和布罗德研究所,候选人已经适应了快速流动化学的快速
合成和人类AMP的工程,并在这一建议,他试图通过两个扩展这些努力
目标。目的1定义了革兰氏阴性杀伤机制的结构-活性关系,
吞噬细胞趋化性由三种不同结构类型的人AMP介导,而Aim 2扩展了这些
研究方向是开发LL-37衍生物作为先导治疗剂。总之,这些目标奠定了
为将所述研究扩展到AMP生物学和工程学的其他方面奠定了基础
作为临床前应用,因为候选人过渡到独立。
候选人的研究背景包括抗逆转录病毒的先天免疫学博士培训
感染与传染病临床培训相结合。K 08指导临床的提案
科学家研究职业发展奖将使候选人能够完成额外的实践,
在蛋白质工程和组学技术的教学培训,在五年内实现的目标,
建立一个独立的,R 01资助的研究计划,将这些方法应用于正在进行的研究
以及开发人AMP作为新型抗生素。在这一努力中,他受到主要导师的指导,
在蛋白质工程和质谱以及细菌致病和基因组方面的专业知识
技术,并得到一个在微生物学方面具有深厚专业知识的咨询委员会的进一步支持,
免疫学、蛋白质组学、AMP作用机制和药物开发以及广泛的
麻省理工学院,MGH和布罗德研究所的资源。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John S. Albin其他文献
John S. Albin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John S. Albin', 18)}}的其他基金
Protein engineering for the development of novel antimicrobial agents
用于开发新型抗菌剂的蛋白质工程
- 批准号:
10669560 - 财政年份:2022
- 资助金额:
$ 19.66万 - 项目类别:
Determining the Role of APOBEC3 Proteins in HIV-1 Drug Resistance
确定 APOBEC3 蛋白在 HIV-1 耐药性中的作用
- 批准号:
8074401 - 财政年份:2009
- 资助金额:
$ 19.66万 - 项目类别:
Determining the Role of APOBEC3 Proteins in HIV-1 Drug Resistance
确定 APOBEC3 蛋白在 HIV-1 耐药性中的作用
- 批准号:
7623283 - 财政年份:2009
- 资助金额:
$ 19.66万 - 项目类别:
Determining the Role of APOBEC3 Proteins in HIV-1 Drug Resistance
确定 APOBEC3 蛋白在 HIV-1 耐药性中的作用
- 批准号:
8263411 - 财政年份:2009
- 资助金额:
$ 19.66万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Studentship














{{item.name}}会员




