Leveraging machine learning to improve risk prediction for chemotherapy inducedneuropathy
利用机器学习改善化疗引起的神经病变的风险预测
基本信息
- 批准号:10364532
- 负责人:
- 金额:$ 68.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdjuvant ChemotherapyAdultAffectAgeAwarenessBiometryBreastCancer SurvivorshipCaringCharacteristicsChemotherapy-induced peripheral neuropathyChronicClinicalClinical DataClinical TrialsColorectal CancerCommunity HealthComplexComputer softwareDecision MakingDevelopmentDiagnosisDoseDose-LimitingElectronic Health RecordGoalsHealth Services ResearchImpairmentIndividualInterviewJournalsLeadLifeLimb structureMachine LearningMalignant NeoplasmsMental DepressionMethodsModelingMotorNatureNeuropathyNumbnessObesityOncologyOutcomePainPatient CarePatient PreferencesPatientsPeer ReviewPeripheral Nervous System DiseasesPharmacotherapyPlatinumPreventionProviderPublicationsQuality of lifeRaceReportingRiskRisk EstimateRisk FactorsSample SizeSavingsStatistical ModelsSymptomsTestingThinkingTimeTranslationsTreatment ProtocolsVinca Alkaloidsanalogassociated symptomcancer carecancer epidemiologycancer invasivenesscancer therapycancer typecare systemschemotherapychemotherapy induced neuropathyclinical decision-makingcommunity based practicecomorbiditydisabilityexperienceexperimental studyfall riskfollow-uphealth care settingshigh riskimprovedmachine learning methodmathematical abilitymedication safetyneurotoxicityolder patientpredictive modelingrisk predictionside effectsurvivorshiptaxanetooltreatment choicetreatment duration
项目摘要
Project Summary/Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects more than two-thirds of adults with
invasive cancer who receive select adjuvant chemotherapies (e.g., taxanes, platinum analogs).
Severe CIPN symptoms can lead to chemotherapy dose reductions, treatment delays, or
changes in treatment regimens; thereby affecting the potential curative effects of chemotherapy.
For some patients, CIPN symptoms can persist over time, contributing to lower quality of life.
Little is known about risk factors for CIPN. Chemotoxicity risk scores have been developed
and evaluated for use among elderly patients receiving chemotherapy. However, these tools
generally report moderate predictive accuracy (60%-70%), small sample sizes, and short-term
follow up. We are aware of no publicly available, validated risk models to assess risk of severe
and chronic CIPN among diverse patients at risk for this potentially disabling side effect.
The goal of this proposal is to identify patients at risk for CIPN and to understand how
patients and provider interpret and use CIPN risk information in clinical decision-making.
Focusing on more than 8,500 insured adults (18+) diagnosed with invasive, stage I-III breast
and II-IIIA colorectal cancers (2013-2021) who received adjuvant chemotherapy treatment with
known risk for CIPN, we will develop and validate predictive models to quantify the risk of
severe CIPN and incident chronic CIPN and assess how CIPN risk information might be used to
inform clinical decision-making about cancer treatment and survivorship care planning.
We hypothesize that CIPN risk is a high priority for patients in thinking about treatment
choice and survivorship care planning. In addition, we hypothesize that the relative importance
of CIPN risk for patient and provider decision-making will vary by patient characteristics (e.g.,
age, cancer stage). We anticipate that the risk of severe and chronic CIPN can be predicted
with a high degree of accuracy using electronic health records and machine learning methods.
The study team has significant and complementary expertise in health services research,
biostatistics and predictive modeling, oncology practice, cancer epidemiology,
pharmacotherapy, drug safety and the patient care experience. To our knowledge, this will be
one of the first studies to develop and validate a CIPN predictive model that can be used by
oncology teams to inform treatment and care planning decisions and improve patient-valued
outcomes. Translation and replication of the findings will be catalyzed through publication in
peer-reviewed journals and the development and distribution of free software to facilitate testing
and adaptation of the resulting risk models across diverse systems of care.
项目摘要/摘要
化疗引起的周围神经病变(CIPN)影响超过三分之二的成年人
接受精选辅助化疗(例如紫杉烷、铂类似物)的浸润性癌症患者。
严重的CIPN症状可导致化疗剂量减少、治疗延误或
治疗方案的变化;从而影响化疗的潜在疗效。
对于一些患者,CIPN症状可能会持续一段时间,导致生活质量下降。
对CIPN的风险因素知之甚少。化学毒性风险评分已经被开发出来
并评估其在接受化疗的老年患者中的使用情况。然而,这些工具
通常报告的预测准确率为中等(60%-70%)、样本量小和短期
继续跟进。我们知道没有公开可用的、经过验证的风险模型来评估严重的
和慢性CIPN在不同的患者中,有这种潜在的致残副作用的风险。
这项建议的目标是确定CIPN的风险患者,并了解如何
患者和提供者在临床决策中解释和使用CIPN风险信息。
重点关注8500多名被诊断为I-III期侵袭性乳房的投保成年人(18岁以上)
和II-IIIA结直肠癌(2013-2021年)接受辅助化疗的患者
对于CIPN的已知风险,我们将开发和验证预测模型来量化
严重CIPN和突发慢性CIPN,并评估如何利用CIPN风险信息
向临床决策提供有关癌症治疗和生存护理计划的信息。
我们假设CIPN风险是患者在考虑治疗时的高度优先事项
选择和生存护理计划。此外,我们假设,
患者和提供商决策的CIPN风险将因患者特征而异(例如,
年龄、癌症分期)。我们预计,严重和慢性CIPN的风险是可以预测的
使用电子健康记录和机器学习方法,具有高度的准确性。
研究小组在卫生服务研究方面拥有重要的和互补的专业知识,
生物统计学和预测模型、肿瘤学实践、癌症流行病学、
药物治疗、药物安全和患者护理经验。据我们所知,这将是
首批开发和验证CIPN预测模型的研究之一,该模型可由
肿瘤学团队为治疗和护理计划决策提供信息,并改善患者价值
结果。这些研究结果的翻译和复制将通过在
同行评议的期刊以及促进测试的自由软件的开发和分发
以及在不同的护理系统中调整由此产生的风险模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alyce Sophia Adams其他文献
Alyce Sophia Adams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alyce Sophia Adams', 18)}}的其他基金
Leveraging machine learning to improve risk prediction for chemotherapy inducedneuropathy
利用机器学习改善化疗引起的神经病变的风险预测
- 批准号:
10665536 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10290745 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
DREAMS - Translational Research Core - Health Equity & Action Translational (HEAT)
梦想 - 转化研究核心 - 健康公平
- 批准号:
10476568 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10903488 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
DREAMS - Translational Research Core - Health Equity & Action Translational (HEAT)
梦想 - 转化研究核心 - 健康公平
- 批准号:
10290747 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
the Diabetes Research for Equity through Advanced Multilevel Science Center for Diabetes Translational Research (DREAMS-CDTR)
通过糖尿病转化研究高级多层次科学中心 (DREAMS-CDTR) 进行糖尿病公平研究
- 批准号:
10476565 - 财政年份:2011
- 资助金额:
$ 68.96万 - 项目类别:
相似海外基金
3D Engineered Model of Microscopic Colorectal Cancer Liver Metastasis for Adjuvant Chemotherapy Screens
用于辅助化疗筛选的显微结直肠癌肝转移 3D 工程模型
- 批准号:
10556192 - 财政年份:2023
- 资助金额:
$ 68.96万 - 项目类别:
Developing Digital Pathology Biomarkers for Response to Neoadjuvant and Adjuvant Chemotherapy in Breast Cancer
开发数字病理学生物标志物以应对乳腺癌新辅助和辅助化疗
- 批准号:
10315227 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Circulating Tumour DNA Analysis Informing Adjuvant Chemotherapy in Stage III Colorectal Cancer: A Multicentre Phase II/III Randomised Controlled Trial (DYNAMIC-III)
循环肿瘤 DNA 分析为 III 期结直肠癌辅助化疗提供信息:多中心 II/III 期随机对照试验 (DYNAMIC-III)
- 批准号:
443988 - 财政年份:2021
- 资助金额:
$ 68.96万 - 项目类别:
Operating Grants
Establishment of new selection system for adjuvant chemotherapy of colorectal cancer
结直肠癌辅助化疗新选择体系的建立
- 批准号:
20K09011 - 财政年份:2020
- 资助金额:
$ 68.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Improved survival by Helicobacter pylori-modulated immunity in gastric cancer patients with adjuvant chemotherapy
幽门螺杆菌调节免疫力可改善接受辅助化疗的胃癌患者的生存率
- 批准号:
19K09130 - 财政年份:2019
- 资助金额:
$ 68.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A new strategy of adjuvant chemotherapy for lung cancer based on the expression of anti-aging gene Klotho
基于抗衰老基因Klotho表达的肺癌辅助化疗新策略
- 批准号:
19K18225 - 财政年份:2019
- 资助金额:
$ 68.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel candidate factors predicting the effect of S-1 adjuvant chemotherapy of pancreatic cancer
预测胰腺癌S-1辅助化疗效果的新候选因素
- 批准号:
18K16337 - 财政年份:2018
- 资助金额:
$ 68.96万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Project 2-Metabolic Modulation of Myeloid-Derived Suppressor Cells to Increase Efficacy of Neo adjuvant Chemotherapy and Immunotherapy
项目2-骨髓源性抑制细胞的代谢调节以提高新辅助化疗和免疫疗法的疗效
- 批准号:
10005254 - 财政年份:2018
- 资助金额:
$ 68.96万 - 项目类别:
Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
- 批准号:
9763320 - 财政年份:2018
- 资助金额:
$ 68.96万 - 项目类别:
Analysis of the molecular mechanism for the prognostic biomarker of adjuvant chemotherapy
辅助化疗预后生物标志物的分子机制分析
- 批准号:
18K07341 - 财政年份:2018
- 资助金额:
$ 68.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)