Radiogenomic tools for prediction of breast cancer neo-adjuvant chemotherapy response from pre-treatment MRI
通过治疗前 MRI 预测乳腺癌新辅助化疗反应的放射基因组学工具
基本信息
- 批准号:9763320
- 负责人:
- 金额:$ 4.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional4D ImagingAdoptionArchitectureBiologicalBiologyBiopsy SpecimenBlood VesselsBreastBreast Cancer PatientCellsClinicClinicalComplementDataDescriptorDetectionDimensionsDiseaseDisease MarkerDoctor of PhilosophyERBB2 geneEnvironmentGenomicsHeterogeneityHistologyHumanImageImmuneImmune responseIn complete remissionInstitutionIntuitionLymphocyteMagnetic Resonance ImagingManuscriptsMolecularMolecular ProfilingMonitorMorphologyNeoadjuvant TherapyNoduleOperative Surgical ProceduresOutcomePECAM1 genePathologicPathologyPathway interactionsPatientsPhysiologyPrediction of Response to TherapyPrior ChemotherapyPublishingRadiogenomicsRadiology SpecialtyReportingResearchRiskScanningShapesSlideStainsSystems BiologyTestingTextureTherapeuticTimeTreatment ProtocolsTumor BiologyValidationWorkadvanced breast cancerangiogenesisanticancer researchauthoritybasechemotherapycohortcontrast enhanceddensitydigital pathologyimaging biomarkerimprovedimproved outcomeineffective therapiesmalignant breast neoplasmmolecular markermolecular subtypesmutational statusnoveloncologyovertreatmentpredicting responsepredictive signaturequantitative imagingradiomicsresponseresponse biomarkerspatiotemporalstandard of caretargeted treatmenttherapy outcometooltreatment durationtreatment grouptreatment responsetumortumor microenvironment
项目摘要
PROJECT SUMMARY: Over 20,000 patients in the US annually undergo neo-adjuvant chemotherapy (NAC)
prior to surgery as a standard-of-care treatment for locally advanced breast cancers, but 70-90% will ultimately
fail to achieve a complete response. If identified prior to treatment, patients who will respond poorly to standard
NAC could be immediately placed on more aggressive treatment regimens, circumventing an ineffective
treatment window that introduces unnecessary suffering and increases risk of progression. While tumor changes
throughout treatment can be monitored using clinical dynamic contrast-enhanced (DCE) MRI, there remains no
clinically-accepted pre-treatment predictors of NAC response. Radiomic analysis, defined as high-throughput
extraction of quantitative image features, has been demonstrated to enable earlier prediction of response from
DCE-MRI with improved accuracy. However, most of the features are limited to texture and shape features of
the nodule, ignoring the opportunity to interrogate features of the tumor microenvironment known to be implicated
in treatment response. Furthermore, a critical roadblock in the wide-scale adoption of radiomics for treatment
response prediction is its low biological interpretability, as its features lack an established molecular and
morphologic basis. Radiogenomic approaches, which seek to identify connections between imaging and
molecular markers of disease, provide greater biologic intuition, but often without application to clinical outcomes.
We propose a systems-biology based approach to predict NAC response from baseline breast DCE-MRI
with high clinical interpretability and robustness. We will develop novel radiomic features targeted to response-
associated tumor biology in the tumor and tumor microenvironment (e.g. immune response and angiogenesis),
then validate both their capability to predict therapeutic outcomes and their basis in multi-scale tumor biology.
Ultimately, the research proposed could provide effective, non-invasive guidance of NAC without sacrificing
biological interpretability of the features, an important pre-requisite for clinical adoption of these tools. Aim 1 will
seek to develop a set of systems-biology driven radiomic descriptors to characterize the biology within the tumor
and its microenvironment from breast DCE-MRI. We have previously shown that texture heterogeneity features
in the peri-tumoral microenvironment on post-contrast MRI are predictive of treatment response and associated
with immune response. We will expand these features to capture temporal changes in 3D heterogeneity, both
intra- and peri-tumorally. Additionally, we will develop morphological features to characterize organization of the
tumor-associated vascular network. Aim 2 will focus on discovering and validating imaging signatures from
baseline DCE-MRI which are predictive of response to NAC with and without HER2-targeted therapy. Aim 3 will
elucidate the molecular and morphological basis of predictive radiomic features identified in Aim 2 by exploring
their associations with aberrations on the genomic and histology scales (immune response and angiogenesis)
from pre-treatment biopsy samples.
项目摘要:美国每年有超过2万名患者接受新辅助化疗(NAC)
在手术作为局部晚期乳腺癌的标准治疗之前,但70%-90%的人最终会
未能实现完整的回应。如果在治疗前确诊,对标准反应差的患者
NAC可以立即接受更积极的治疗方案,绕过无效的
治疗窗口带来了不必要的痛苦,增加了病情进展的风险。当肿瘤发生变化时
在整个治疗过程中,可以使用临床动态对比增强(DCE)MRI进行监测,仍然没有
临床公认的NAC反应的治疗前预测指标。放射学分析,定义为高通量
定量图像特征的提取已被证明能够更早地预测
DCE-MRI具有更高的准确性。然而,大多数特征仅限于纹理和形状特征
结节,忽视了询问已知受牵连的肿瘤微环境特征的机会
在治疗反应中。此外,广泛采用放射组学治疗的一个关键障碍
反应预测是它的生物可解释性低,因为它的特征缺乏既定的分子和
形态基础。放射基因组学方法,寻求确定成像和
疾病的分子标记提供了更大的生物直觉,但通常不适用于临床结果。
我们提出了一种基于系统生物学的方法来根据基线乳房DCE-MRI预测NAC反应
具有很高的临床可解释性和稳健性。我们将开发新的放射组学特征,以响应-
肿瘤和肿瘤微环境中的相关肿瘤生物学(例如免疫反应和血管生成),
然后验证它们预测治疗结果的能力以及它们在多尺度肿瘤生物学中的基础。
最终,提出的研究可以在不牺牲的情况下为NAC提供有效的、非侵入性的指导
这些特征的生物学可解释性,是临床采用这些工具的重要先决条件。目标1将
寻求开发一套系统生物学驱动的放射组学描述符来表征肿瘤内的生物学
以及乳腺DCE-MRI的微环境。我们之前已经证明了纹理的异质性特征
在肿瘤周围微环境中,增强后MRI可以预测治疗反应并与
有免疫反应。我们将扩展这些功能以捕获3D异构性的时间变化,两者都
肿瘤内和肿瘤周围。此外,我们将开发形态特征来表征组织
肿瘤相关血管网络。目标2将专注于发现和验证来自
基线DCE-MRI可以预测接受和不接受HER2靶向治疗的NAC的反应。目标3将
通过探索阐明AIM 2中确定的预测放射组学特征的分子和形态基础
它们与基因组和组织学尺度上的异常(免疫反应和血管生成)的关系
从治疗前的活组织检查样本中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(5)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NATHANIEL BRAMAN其他文献
NATHANIEL BRAMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Observation for dynamic process of dental caries by in situ 4D imaging
原位4D成像观察龋齿动态过程
- 批准号:
23K16022 - 财政年份:2023
- 资助金额:
$ 4.26万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/Y003586/1 - 财政年份:2023
- 资助金额:
$ 4.26万 - 项目类别:
Training Grant
3D and 4D imaging - key skills for the Earth, Environmental & Planetary Sciences
3D 和 4D 成像 - 地球、环境的关键技能
- 批准号:
NE/X009262/1 - 财政年份:2023
- 资助金额:
$ 4.26万 - 项目类别:
Training Grant
4D Imaging of Biofunctional Information by Multidimensional Measurement and Lightwave Manipulation of Scattered Light
通过多维测量和散射光的光波操纵对生物功能信息进行 4D 成像
- 批准号:
23KJ1570 - 财政年份:2023
- 资助金额:
$ 4.26万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Investigating the principles of physiological and pathological vascular remodeling via 4D imaging of live mouse skin
通过活体小鼠皮肤 4D 成像研究生理和病理血管重塑的原理
- 批准号:
10739431 - 财政年份:2023
- 资助金额:
$ 4.26万 - 项目类别:
4D imaging of the dynamic molecular, cellular and tissue organization in living systems
生命系统中动态分子、细胞和组织组织的 4D 成像
- 批准号:
BB/W020335/1 - 财政年份:2022
- 资助金额:
$ 4.26万 - 项目类别:
Research Grant
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2021
- 资助金额:
$ 4.26万 - 项目类别:
Discovery Grants Program - Individual
confocal microscope for 4D imaging of multicellular structure and activity
用于多细胞结构和活性 4D 成像的共焦显微镜
- 批准号:
465594799 - 财政年份:2021
- 资助金额:
$ 4.26万 - 项目类别:
Major Research Instrumentation
4D imaging of arterial-wall fiber structure under pulsatile conditions by using synchrotron radiation phase-contrast CT
使用同步辐射相衬 CT 对脉动条件下的动脉壁纤维结构进行 4D 成像
- 批准号:
20K21899 - 财政年份:2020
- 资助金额:
$ 4.26万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
4D Imaging of Spatially and Temporally Dynamic Biophysical Processes using Sparse Data Methods
使用稀疏数据方法对时空动态生物物理过程进行 4D 成像
- 批准号:
RGPIN-2017-04293 - 财政年份:2020
- 资助金额:
$ 4.26万 - 项目类别:
Discovery Grants Program - Individual