PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
基本信息
- 批准号:10359182
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAgeAlaska NativeAmerican IndiansAsian populationAttentionBlack AmericanCalibrationCharacteristicsClinicalClinical DataClinical InformaticsCollectionCommunicationDataData AnalyticsData ScienceData SetData SourcesDevelopmentDevelopment PlansDiagnosisDiscriminationDiseaseElectronic Health RecordEnsureEnvironmentEpidemiologistEpidemiologyEthnic OriginEthnic groupExcisionFaceFundingGastroenterologistGeneral PopulationGoalsGrantHealth Disparities ResearchHealth Services ResearchHealthcareHelicobacter pyloriHispanic PopulationsImmigrantIndividualInformaticsInformation RetrievalInpatientsLaboratoriesLassoLeadLeadershipLifeMachine LearningMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMaster&aposs DegreeMeasuresMedicareMentorsMentorshipMethodologyModelingMorbidity - disease rateNational Cancer InstituteNatural Language ProcessingNatureNeighborhoodsNot Hispanic or LatinoObservational StudyOutcomeOutpatientsPerformancePharmacy facilityPhenotypePovertyPrecision HealthPreventionProbabilityPrognosisRaceReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsScreening for Gastric CancerSmokingSubgroupSystemTechniquesTestingTimeTrainingUnemploymentUnited StatesUniversitiesValidationWorkadvanced analyticsattenuationbasecancer diagnosiscancer health disparitycancer riskcareer developmentclinically actionablecohortdata miningdata streamsdeep learningdisparity eliminationdisparity reductionexperiencegastric cancer preventionhealth care disparityhealth equityhigh riskimprovedimproved outcomelearning algorithmlearning strategymachine learning algorithmmachine learning modelmalignant stomach neoplasmmortalitymulti-ethnicneural networknoveloutcome predictionpersonalized predictionspersonalized risk predictionprediction algorithmprogramsracial and ethnicracial diversityrandom forestrisk predictionrisk prediction modelsexskillssuccesssupervised learningsupport vector machinetoolunstructured data
项目摘要
The National Cancer Institute has called for eliminating disparities in cancer morbidity
and mortality through the use of Data Science. Gastric cancer remains one of the most unequally distributed
cancers in the United States, with high burden among certain ethnic, racial, and immigrant groups. Identification
of individuals at greatest risk for gastric cancer may allow for targeted risk attenuation programs, and improve
health equity. Candidate and Career Development Plan: I am a board-certified Gastroenterologist and Master’s
degree-trained epidemiologist at Stanford University who seeks to use data science to reduce disparities in
cancer outcomes. Based on my training and experience, I have content expertise in gastrointestinal cancer
diagnosis, and methodologic expertise in epidemiologic principles and observational study design. In order to
achieve my long-term goal of becoming an independent investigator and national leader in cancer disparities
research, I require additional quantitative skills (large data analytics, machine learning-based risk prediction,
unstructured data extraction using natural language processing), qualitative skills (effective scientific
communication, scientific leadership), and professional development. Research Plan: The overarching research
aim of this proposal is to develop a PErsonalized Risk Score for gastrIc CancEr (PRECISE) using real-world
clinical data sources. My overall hypothesis is that through use of advanced data analytics and deep learning
methods, a highly-refined cohort of individuals at highest risk for gastric cancer can be identified. The Specific
Aims of this proposal seek to address this hypothesis: (1) to build a personalized risk prediction model using
regression, (2) to build a personalized risk prediction model using machine learning algorithms, and (3) to
compare regression and machine learning models in electronic health records data. Achievement of these aims
will produce a novel, personalized prediction score which will help identify individuals at high risk for gastric
cancer and who may benefit from targeted risk attenuation programs. Mentorship Team: To achieve these
Aims, I have assembled a world class mentorship team with expertise in epidemiology and health disparities
research (Latha Palaniappan, primary mentor), machine learning and natural language processing in EHR data
(Tina Hernandez-Boussard, co-mentor), and gastric cancer screening and prevention (Joo Ha Hwang, co-mentor).
Environment and Institutional Commitment: Stanford University is a world leader in clinical
informatics, epidemiology, and health services research. I will have access to a unique data core, which contains
one of the most extensive and robust collections of curated clinical data in the world. My mentorship team is
committed to ensuring the success of the proposal, and in developing me to become an independent investigator
competitive for R-level grants.
国家癌症研究所呼吁消除癌症发病率的差异
通过使用数据科学来降低死亡率。胃癌仍然是分布最不均匀的肿瘤之一,
在美国,癌症在某些民族、种族和移民群体中负担很高。识别
胃癌风险最高的个体的死亡率可能允许有针对性的风险衰减计划,并改善
健康公平。候选人和职业发展计划:我是一个委员会认证的胃肠病学家和硕士
斯坦福大学的一位受过学位训练的流行病学家,他试图利用数据科学来减少
癌症结果。根据我的培训和经验,我在胃肠癌方面有内容专业知识
诊断,流行病学原理和观察性研究设计的方法学专业知识。为了
实现我的长期目标,成为一个独立的调查员和国家领导人在癌症的差距
研究,我需要额外的定量技能(大数据分析,基于机器学习的风险预测,
使用自然语言处理的非结构化数据提取),定性技能(有效的科学
沟通,科学领导力)和专业发展。研究计划:总体研究
该提案的目的是使用真实世界的数据开发胃癌的个性化风险评分(PRECISE)
临床数据来源。我的总体假设是,通过使用先进的数据分析和深度学习,
通过这些方法,可以鉴定出胃癌风险最高的个体的高度精炼的队列。具体
本提案的目的是试图解决这一假设:(1)建立一个个性化的风险预测模型,
回归,(2)使用机器学习算法构建个性化风险预测模型,以及(3)
比较电子健康记录数据中的回归和机器学习模型。实现这些目标
将产生一种新的,个性化的预测评分,这将有助于识别胃肠道疾病高风险的个体。
癌症和谁可能受益于有针对性的风险衰减计划。导师团队:为了实现这些目标
我组建了一个世界级的导师团队,他们拥有流行病学和健康差异方面的专业知识,
研究(Latha Palaniappan,主要导师),EHR数据中的机器学习和自然语言处理
(Tina Hernandel-Boussard,共同导师)和胃癌筛查和预防(Joo Ha Hwang,共同导师)。
环境和机构承诺:斯坦福大学是世界领先的临床
信息学、流行病学和卫生服务研究。我就能得到一个独一无二的数据核心
世界上最广泛和最强大的精选临床数据集之一。我的导师团队是
我致力于确保提案的成功,并将我培养成一名独立调查员
竞争力的R级赠款。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Jeffrey Huang其他文献
Robert Jeffrey Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Jeffrey Huang', 18)}}的其他基金
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10550247 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10214927 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant














{{item.name}}会员




