PRECISE - a PErsonalized Risk Score for gastrIc CancEr

PRECISE - 胃癌的个性化风险评分

基本信息

  • 批准号:
    10550247
  • 负责人:
  • 金额:
    $ 18.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

The National Cancer Institute has called for eliminating disparities in cancer morbidity and mortality through the use of Data Science. Gastric cancer remains one of the most unequally distributed cancers in the United States, with high burden among certain ethnic, racial, and immigrant groups. Identification of individuals at greatest risk for gastric cancer may allow for targeted risk attenuation programs, and improve health equity. Candidate and Career Development Plan: I am a board-certified Gastroenterologist and Master’s degree-trained epidemiologist at Stanford University who seeks to use data science to reduce disparities in cancer outcomes. Based on my training and experience, I have content expertise in gastrointestinal cancer diagnosis, and methodologic expertise in epidemiologic principles and observational study design. In order to achieve my long-term goal of becoming an independent investigator and national leader in cancer disparities research, I require additional quantitative skills (large data analytics, machine learning-based risk prediction, unstructured data extraction using natural language processing), qualitative skills (effective scientific communication, scientific leadership), and professional development. Research Plan: The overarching research aim of this proposal is to develop a PErsonalized Risk Score for gastrIc CancEr (PRECISE) using real-world clinical data sources. My overall hypothesis is that through use of advanced data analytics and deep learning methods, a highly-refined cohort of individuals at highest risk for gastric cancer can be identified. The Specific Aims of this proposal seek to address this hypothesis: (1) to build a personalized risk prediction model using regression, (2) to build a personalized risk prediction model using machine learning algorithms, and (3) to compare regression and machine learning models in electronic health records data. Achievement of these aims will produce a novel, personalized prediction score which will help identify individuals at high risk for gastric cancer and who may benefit from targeted risk attenuation programs. Mentorship Team: To achieve these Aims, I have assembled a world class mentorship team with expertise in epidemiology and health disparities research (Latha Palaniappan, primary mentor), machine learning and natural language processing in EHR data (Tina Hernandez-Boussard, co-mentor), and gastric cancer screening and prevention (Joo Ha Hwang, co-mentor). Environment and Institutional Commitment: Stanford University is a world leader in clinical informatics, epidemiology, and health services research. I will have access to a unique data core, which contains one of the most extensive and robust collections of curated clinical data in the world. My mentorship team is committed to ensuring the success of the proposal, and in developing me to become an independent investigator competitive for R-level grants.
国家癌症研究所呼吁消除癌症发病率的差异 通过使用数据科学来降低死亡率。胃癌仍然是分布最不均匀的癌症之一。 美国的癌症,在某些种族、种族和移民群体中负担很高。鉴定 对患胃癌风险最高的人的评估可能会允许有针对性的降低风险计划,并改善 健康公平。应聘者和职业发展计划:我是一名获得董事会认证的胃肠病专家和硕士 斯坦福大学受过学位培训的流行病学家,他试图利用数据科学来减少 癌症后果。根据我的培训和经验,我在胃肠道癌症方面有丰富的专业知识 流行病学原理和观察性研究设计方面的诊断和方法学专长。为了 实现我的长期目标,成为癌症差异方面的独立调查者和全国领导者 研究,我需要额外的量化技能(大数据分析、基于机器学习的风险预测、 使用自然语言处理的非结构化数据提取)、定性技能(有效的科学 沟通、科学领导)和专业发展。研究计划:总体研究 这项建议的目的是利用现实世界开发一个个性化的胃癌风险评分(精确)。 临床数据来源。我的总体假设是,通过使用高级数据分析和深度学习 方法,可以确定高度精炼的胃癌高危人群。具体的 该建议的目的在于解决这一假设:(1)使用以下方法构建个性化风险预测模型 回归,(2)使用机器学习算法建立个性化风险预测模型,以及(3) 比较电子健康档案数据中的回归模型和机器学习模型。实现这些目标 将产生一种新颖的、个性化的预测分数,有助于识别胃病的高危个体 以及哪些人可能受益于有针对性的风险降低计划。导师团队:实现这些目标 AIMS,我组建了一支世界级的指导团队,在流行病学和健康差距方面拥有专业知识 研究(Latha Palaniappan,主要导师)、机器学习和EHR数据中的自然语言处理 (Tina Hernandez-Boussard,共同导师)和胃癌筛查和预防(Joo Ha Hwang,共同导师)。 环境和机构承诺:斯坦福大学在临床领域处于世界领先地位 信息学、流行病学和卫生服务研究。我将可以访问一个独特的数据核心,其中包含 世界上最广泛和最强大的精选临床数据收集之一。我的导师团队是 致力于确保提案的成功,并将我培养成一名独立调查员 R级助学金竞争激烈。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Jeffrey Huang其他文献

Robert Jeffrey Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Jeffrey Huang', 18)}}的其他基金

PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
  • 批准号:
    10359182
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
  • 批准号:
    10214927
  • 财政年份:
    2021
  • 资助金额:
    $ 18.82万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.82万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了