PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
基本信息
- 批准号:10550247
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAgeAlaska NativeAmerican IndiansAsian populationAttentionBlack PopulationsBoard CertificationCalibrationCharacteristicsClinicalClinical DataClinical InformaticsCollectionCommunicationDataData AnalyticsData ScienceData SetData SourcesDevelopmentDevelopment PlansDiagnosisDiscriminationDiseaseElectronic Health RecordEnsureEnvironmentEpidemiologistEpidemiologyEquityEthnic OriginEthnic PopulationExcisionFaceFundingGastroenterologistGeneral PopulationGoalsGrantHealth Disparities ResearchHealth Services ResearchHealthcareHelicobacter pyloriHispanic PopulationsImmigrantIndividualInequityInformaticsInformation RetrievalInpatientsInstitutionLaboratoriesLassoLeadershipMachine LearningMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMaster of ScienceMeasuresMedicareMentorsMentorshipMethodologyModelingMorbidity - disease rateNational Cancer InstituteNatural Language ProcessingNatureNeighborhoodsNot Hispanic or LatinoObservational StudyOutcomeOutpatientsPerformancePharmacy facilityPhenotypePovertyPrecision HealthPreventionProbabilityPrognosisRaceReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsScreening for Gastric CancerSmokingSubgroupSystemTechniquesTestingTimeTrainingUnemploymentUnited StatesUniversitiesValidationWorkadvanced analyticsattenuationcancer diagnosiscancer health disparitycancer riskcareer developmentclinically actionablecohortdata miningdata streamsdeep learningdisparity eliminationdisparity reductionexperiencegastric cancer preventionhealth care disparityhealth equityhigh riskhigh risk populationimprovedimproved outcomelearning algorithmlearning strategymachine learning algorithmmachine learning modelmalignant stomach neoplasmmortalitymulti-ethnicneural networknoveloutcome predictionpersonalized predictionspersonalized risk predictionprogramsracial diversityrandom forestrisk predictionrisk prediction modelsexskillssuccesssupervised learningsupport vector machinetoolunstructured datayears of life lost
项目摘要
The National Cancer Institute has called for eliminating disparities in cancer morbidity
and mortality through the use of Data Science. Gastric cancer remains one of the most unequally distributed
cancers in the United States, with high burden among certain ethnic, racial, and immigrant groups. Identification
of individuals at greatest risk for gastric cancer may allow for targeted risk attenuation programs, and improve
health equity. Candidate and Career Development Plan: I am a board-certified Gastroenterologist and Master’s
degree-trained epidemiologist at Stanford University who seeks to use data science to reduce disparities in
cancer outcomes. Based on my training and experience, I have content expertise in gastrointestinal cancer
diagnosis, and methodologic expertise in epidemiologic principles and observational study design. In order to
achieve my long-term goal of becoming an independent investigator and national leader in cancer disparities
research, I require additional quantitative skills (large data analytics, machine learning-based risk prediction,
unstructured data extraction using natural language processing), qualitative skills (effective scientific
communication, scientific leadership), and professional development. Research Plan: The overarching research
aim of this proposal is to develop a PErsonalized Risk Score for gastrIc CancEr (PRECISE) using real-world
clinical data sources. My overall hypothesis is that through use of advanced data analytics and deep learning
methods, a highly-refined cohort of individuals at highest risk for gastric cancer can be identified. The Specific
Aims of this proposal seek to address this hypothesis: (1) to build a personalized risk prediction model using
regression, (2) to build a personalized risk prediction model using machine learning algorithms, and (3) to
compare regression and machine learning models in electronic health records data. Achievement of these aims
will produce a novel, personalized prediction score which will help identify individuals at high risk for gastric
cancer and who may benefit from targeted risk attenuation programs. Mentorship Team: To achieve these
Aims, I have assembled a world class mentorship team with expertise in epidemiology and health disparities
research (Latha Palaniappan, primary mentor), machine learning and natural language processing in EHR data
(Tina Hernandez-Boussard, co-mentor), and gastric cancer screening and prevention (Joo Ha Hwang, co-mentor).
Environment and Institutional Commitment: Stanford University is a world leader in clinical
informatics, epidemiology, and health services research. I will have access to a unique data core, which contains
one of the most extensive and robust collections of curated clinical data in the world. My mentorship team is
committed to ensuring the success of the proposal, and in developing me to become an independent investigator
competitive for R-level grants.
美国国家癌症研究所呼吁消除癌症发病率的差异
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Jeffrey Huang其他文献
Robert Jeffrey Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Jeffrey Huang', 18)}}的其他基金
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10359182 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10214927 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 18.82万 - 项目类别:
Research Grant














{{item.name}}会员




