PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
基本信息
- 批准号:10214927
- 负责人:
- 金额:$ 18.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-03-01 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:AchievementAddressAfrican AmericanAgeAlaska NativeAmerican IndiansAsiansAttentionCalibrationCharacteristicsClinicalClinical DataClinical InformaticsCollectionCommunicationDataData AnalyticsData ScienceData SetData SourcesDevelopmentDevelopment PlansDiagnosisDiscriminationDiseaseElectronic Health RecordEnsureEnvironmentEpidemiologistEpidemiologyEthnic OriginEthnic groupExcisionFaceFundingGastroenterologistGeneral PopulationGoalsGrantHealth Services ResearchHealthcareHelicobacter pyloriHispanicsImmigrantIndividualInformaticsInformation RetrievalInpatientsLaboratoriesLassoLeadLeadershipLifeMachine LearningMalignant NeoplasmsMalignant neoplasm of gastrointestinal tractMaster&aposs DegreeMeasuresMedicareMentorsMentorshipMethodologyModelingMorbidity - disease rateNational Cancer InstituteNatural Language ProcessingNatureNeighborhoodsNot Hispanic or LatinoObservational StudyOutcomeOutpatientsPerformancePharmacy facilityPhenotypePovertyPrecision HealthPreventionProbabilityPrognosisRaceReportingResearchResearch DesignResearch PersonnelRiskRisk FactorsScreening for Gastric CancerSmokingSubgroupSystemTechniquesTestingTimeTrainingUnemploymentUnited StatesUniversitiesValidationWorkadvanced analyticsattenuationbasecancer diagnosiscancer health disparitycancer riskcareer developmentclinically actionablecohortdata miningdata streamsdeep learningdisparity eliminationdisparity reductionexperiencegastric cancer preventionhealth care disparityhealth disparityhealth equityhigh riskimprovedimproved outcomelearning algorithmlearning strategymachine learning algorithmmalignant stomach neoplasmmortalitymulti-ethnicneural networknoveloutcome predictionpersonalized predictionspersonalized risk predictionprediction algorithmprogramsracial and ethnicracial diversityrandom forestrisk predictionrisk prediction modelsexskillssuccesssupervised learningsupport vector machinetoolunstructured data
项目摘要
The National Cancer Institute has called for eliminating disparities in cancer morbidity
and mortality through the use of Data Science. Gastric cancer remains one of the most unequally distributed
cancers in the United States, with high burden among certain ethnic, racial, and immigrant groups. Identification
of individuals at greatest risk for gastric cancer may allow for targeted risk attenuation programs, and improve
health equity. Candidate and Career Development Plan: I am a board-certified Gastroenterologist and Master’s
degree-trained epidemiologist at Stanford University who seeks to use data science to reduce disparities in
cancer outcomes. Based on my training and experience, I have content expertise in gastrointestinal cancer
diagnosis, and methodologic expertise in epidemiologic principles and observational study design. In order to
achieve my long-term goal of becoming an independent investigator and national leader in cancer disparities
research, I require additional quantitative skills (large data analytics, machine learning-based risk prediction,
unstructured data extraction using natural language processing), qualitative skills (effective scientific
communication, scientific leadership), and professional development. Research Plan: The overarching research
aim of this proposal is to develop a PErsonalized Risk Score for gastrIc CancEr (PRECISE) using real-world
clinical data sources. My overall hypothesis is that through use of advanced data analytics and deep learning
methods, a highly-refined cohort of individuals at highest risk for gastric cancer can be identified. The Specific
Aims of this proposal seek to address this hypothesis: (1) to build a personalized risk prediction model using
regression, (2) to build a personalized risk prediction model using machine learning algorithms, and (3) to
compare regression and machine learning models in electronic health records data. Achievement of these aims
will produce a novel, personalized prediction score which will help identify individuals at high risk for gastric
cancer and who may benefit from targeted risk attenuation programs. Mentorship Team: To achieve these
Aims, I have assembled a world class mentorship team with expertise in epidemiology and health disparities
research (Latha Palaniappan, primary mentor), machine learning and natural language processing in EHR data
(Tina Hernandez-Boussard, co-mentor), and gastric cancer screening and prevention (Joo Ha Hwang, co-mentor).
Environment and Institutional Commitment: Stanford University is a world leader in clinical
informatics, epidemiology, and health services research. I will have access to a unique data core, which contains
one of the most extensive and robust collections of curated clinical data in the world. My mentorship team is
committed to ensuring the success of the proposal, and in developing me to become an independent investigator
competitive for R-level grants.
国家癌症研究所呼吁消除癌症发病率的差异
通过使用数据科学来降低死亡率。胃癌仍然是分布最不均匀的肿瘤之一,
在美国,癌症在某些民族、种族和移民群体中负担很高。识别
胃癌风险最高的个体的死亡率可能允许有针对性的风险衰减计划,并改善
健康公平。候选人和职业发展计划:我是一个委员会认证的胃肠病学家和硕士
斯坦福大学的一位受过学位训练的流行病学家,他试图利用数据科学来减少
癌症结果。根据我的培训和经验,我在胃肠癌方面有内容专业知识
诊断,流行病学原理和观察性研究设计的方法学专业知识。为了
实现我的长期目标,成为一个独立的调查员和国家领导人在癌症的差距
研究,我需要额外的定量技能(大数据分析,基于机器学习的风险预测,
使用自然语言处理的非结构化数据提取),定性技能(有效的科学
沟通,科学领导力)和专业发展。研究计划:总体研究
该提案的目的是使用真实世界的数据开发胃癌的个性化风险评分(PRECISE)
临床数据来源。我的总体假设是,通过使用先进的数据分析和深度学习,
通过这些方法,可以鉴定出胃癌风险最高的个体的高度精炼的队列。具体
本提案的目的是试图解决这一假设:(1)建立一个个性化的风险预测模型,
回归,(2)使用机器学习算法构建个性化风险预测模型,以及(3)
比较电子健康记录数据中的回归和机器学习模型。实现这些目标
将产生一种新的,个性化的预测评分,这将有助于识别胃肠道疾病高风险的个体。
癌症和谁可能受益于有针对性的风险衰减计划。导师团队:为了实现这些目标
我组建了一个世界级的导师团队,他们拥有流行病学和健康差异方面的专业知识,
研究(Latha Palaniappan,主要导师),EHR数据中的机器学习和自然语言处理
(Tina Hernandel-Boussard,共同导师)和胃癌筛查和预防(Joo Ha Hwang,共同导师)。
环境和机构承诺:斯坦福大学是世界领先的临床
信息学、流行病学和卫生服务研究。我就能得到一个独一无二的数据核心
世界上最广泛和最强大的精选临床数据集之一。我的导师团队是
我致力于确保提案的成功,并将我培养成一名独立调查员
竞争力的R级赠款。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Jeffrey Huang其他文献
Robert Jeffrey Huang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Jeffrey Huang', 18)}}的其他基金
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10359182 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
PRECISE - a PErsonalized Risk Score for gastrIc CancEr
PRECISE - 胃癌的个性化风险评分
- 批准号:
10550247 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
相似海外基金
African American (AA) Communities Speak: Partnering with AAs in the North and South to Train Palliative Care Clinicians to Address Interpersonal and Systemic Racism and Provide Culturally Aligned Care
非裔美国人 (AA) 社区发言:与北部和南部的 AA 合作,培训姑息治疗临床医生,以解决人际和系统性种族主义并提供文化一致的护理
- 批准号:
10734272 - 财政年份:2023
- 资助金额:
$ 18.82万 - 项目类别:
GODDESS (Gathering Online for Dialogue and Discussion to Enhance Social Support): Engaging young African American women in a virtual group app to address alcohol misuse, sexual risk, and PrEP in NC
GODDESS(在线聚集进行对话和讨论,以加强社会支持):让年轻的非裔美国女性参与虚拟团体应用程序,以解决北卡罗来纳州的酒精滥用、性风险和 PrEP 问题
- 批准号:
10541028 - 财政年份:2022
- 资助金额:
$ 18.82万 - 项目类别:
GODDESS (Gathering Online for Dialogue and Discussion to Enhance Social Support): Engaging young African American women in a virtual group app to address alcohol misuse, sexual risk, and PrEP in NC
GODDESS(在线聚集进行对话和讨论,以加强社会支持):让年轻的非裔美国女性参与虚拟团体应用程序,以解决北卡罗来纳州的酒精滥用、性风险和 PrEP 问题
- 批准号:
10684239 - 财政年份:2022
- 资助金额:
$ 18.82万 - 项目类别:
A multidimensional Digital Approach to Address Vaccine Hesitancy and Increase COVID-19 Vaccine Uptake among African American Young Adults in the South
解决疫苗犹豫问题并提高南方非裔美国年轻人对 COVID-19 疫苗接种率的多维数字方法
- 批准号:
10395616 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
A multidimensional Digital Approach to Address Vaccine Hesitancy and Increase COVID-19 Vaccine Uptake among African American Young Adults in the South
解决疫苗犹豫问题并提高南方非裔美国年轻人对 COVID-19 疫苗接种率的多维数字方法
- 批准号:
10786490 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
Reducing Hypertension among African American Men: A Mobile Stress Management Intervention to Address Health Disparities
减少非裔美国男性的高血压:解决健康差异的移动压力管理干预措施
- 批准号:
10821849 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
Reducing Hypertension among African American Men: A Mobile Stress Management Intervention to Address Health Disparities
减少非裔美国男性的高血压:解决健康差异的移动压力管理干预措施
- 批准号:
10384110 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
A multidimensional Digital Approach to Address Vaccine Hesitancy and Increase COVID-19 Vaccine Uptake among African American Young Adults in the South
解决疫苗犹豫问题并提高南方非裔美国年轻人对 COVID-19 疫苗接种率的多维数字方法
- 批准号:
10336591 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
Community-Academic Partnerships to Address COVID-19 Inequities within African American Communities
社区学术伙伴关系解决非裔美国人社区内的 COVID-19 不平等问题
- 批准号:
10245326 - 财政年份:2021
- 资助金额:
$ 18.82万 - 项目类别:
Building a Multidisciplinary Research Program to Address Hypertension Disparities:Exploring the Neurocognitive Mechanisms of a Self-Management Intervention for African American Women with Hypertension
建立一个多学科研究计划来解决高血压差异:探索非裔美国高血压女性自我管理干预的神经认知机制
- 批准号:
10334538 - 财政年份:2019
- 资助金额:
$ 18.82万 - 项目类别:














{{item.name}}会员




