Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
基本信息
- 批准号:10359812
- 负责人:
- 金额:$ 71.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-10 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:Accident and Emergency departmentAcuteAgreementAirAlgorithmsAnimalsBlood PressureCardiovascular systemCaringClassificationClinical TreatmentComplexCoupledCritical IllnessDataData SetDatabasesDevelopmentDiagnosisEffectivenessElectronic Health RecordEmergency CareEmergency Department PhysicianEnvironmentFamily suidaeFrequenciesGraphHealthHealthcareHeart RateHemorrhageHemorrhagic ShockHospitalsHumanHypovolemiaIncidenceInpatientsInterventionLeadLibrariesLinkMachine LearningMeasuresMechanical ventilationMedicalMelonsModelingMonitorMorbidity - disease rateNormal RangeNursesOrgan failureParamedical PersonnelPathologic ProcessesPatient MonitoringPatient-Focused OutcomesPatientsPatternPhysiologicalPrimary Health CareProcessProtocols documentationRecordsRefractoryResourcesResuscitationRunningSamplingSepsisSeriesSerious Adverse EventSeveritiesShockSiteSpecificityStandardizationSystemTechniquesTestingTimeTrainingTraumaTrauma patientTraumatic HemorrhageTriageUniversitiesValidationWeaningWorkadvanced systembaseclinical careclinical decision supportclinically relevantcostdata modelingdata streamsdemographicsdiagnostic accuracyeffectiveness evaluationhemodynamicshigh riskimprovedin silicoindexinginsightiterative designmachine learning modelmortalitynon-invasive monitororgan injurypatient populationporcine modelpredictive modelingpredictive toolsprospectiveresponsesignal processingsimulationsuccesssupport toolstooltreatment response
项目摘要
Project Summary/Abstract: Cardiorespiratory instability (CRI) is common in trauma patients and other
acutely ill patients being transferred from trauma sites or between hospital centers. Although
paramedics/nurses (PM/RN) have some success in rescuing unstable patients with CRI using defined
protocols and decrease incidence of inter-transport severe circulatory shock, the shock recognition tools
available and resuscitation endpoints are limited to blood pressure and heart rate thresholds. However, CRI is
often unrecognized until it is well established when patients are more refractory to treatment, or progressed to
organ injury. If one could accurately predict who, when and why these critically ill patients develop CRI, then
effective preemptive treatments could be given to improve care and triage resulting in better use of healthcare
resources. We have shown that an integrated monitoring system alert obtained from continuous noninvasively
acquired monitoring parameters coupled to a care algorithm improved step-down unit (SDU) patient outcomes.
We also applied machine learning (ML) modeling to our clinically-relevant porcine model of hemorrhagic shock
to characterize responses to hypovolemia, hemorrhage, and resuscitation, predict which animals would or
would not collapse during hypovolemia, and identify occult bleeding 5 minutes earlier than with traditional
monitoring. We now propose to apply our work to vulnerable STAT MedEvac air transported patients. We will
validate these approaches in our existing >5,000 patient STAT MedEvac database, containing highly granular
continuous non-invasive monitoring waveforms of air transported critically ill patients linked to their primary
care and inpatient electronic health records (EHR). This level of patient information and granularity linked to
treatment data and patient outcomes is unprecedented. We will extend our analysis to include more complex
CRI, richer data, deeper analytics, and larger libraries of critically ill patients while in air transport, linking our
proven Functional Hemodynamic Monitoring (FHM) principles for pathophysiologic diagnosis and resuscitation
with non-invasive monitoring to operationalize personalized resuscitation. We will concurrently running two
specific aims. First, we will develop through the Carnegie Melon University Auton Lab multivariable models
through ML data-driven classification techniques to predict CRI. We will do this initially on our existing porcine
hemorrhagic shock model data (n=60) and then on our STAT MedEvac dataset linked to EHR (n >5,000
patients), determining the minimal data (measures, sampling frequency, observation duration) required to
robustly identify deviation from health, likely CRI cause, and response to treatment (endpoint of resuscitation),
as well as the incremental benefit of additional variables, analysis, lead-time and sampling frequency to predict
CRI and response to treatment, and examine the trade-offs between model parsimony and specificity. Second,
we will evaluate our existing clinical decision support (CDS) tools to interface with FHM principles and ML-
defined interactions, and trial this in silico first on our porcine hemorrhagic shock resuscitation, then on our
STAT MedEvac data, followed by prospective human simulation on flight crew PM/RN (n=160) during annual
training for agreement and benefit, defining effectiveness based on diagnosis accuracy, time to diagnosis,
intervention choice accuracy and time to intervention. This iterative process will modify the existing CDS
platform into one more specifically suited for air transport scenarios. Finally, we will evaluate the resultant
semi-autonomous management protocol initially in retrospect in 100 STAT MedEvac patients and 10
Emergency Department trauma patients and then prospectively by active CDS in a final 100 STAT MedEvac
patients. We will prospectively analyze the effectiveness of these calibrated CDS tools for predictive ability of
the various ML models and apply the best, most practical and parsimonious predictive models for clinical care
during transport based on patient population, pathological processes and support staff.
项目摘要/摘要:心肺不稳定(CRI)常见于创伤患者等
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Severity-Driven Trends in Mortality in a Large Regionalized Critical Care Transport Service.
大型区域化重症监护运输服务中由严重程度驱动的死亡率趋势。
- DOI:10.1016/j.amj.2023.11.004
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Salcido,DavidD;Zikmund,ChaseW;Weiss,LeonardS;Schoenling,Andrew;Martin-Gill,Christian;Guyette,FrancisX;Pinsky,MichaelR
- 通讯作者:Pinsky,MichaelR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL R PINSKY其他文献
MICHAEL R PINSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL R PINSKY', 18)}}的其他基金
Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
- 批准号:
9912846 - 财政年份:2019
- 资助金额:
$ 71.22万 - 项目类别:
Machine learning of physiological variables to predict diagnose and treat cardiorespiratory instability
机器学习生理变量来预测诊断和治疗心肺不稳定
- 批准号:
9029396 - 财政年份:2016
- 资助金额:
$ 71.22万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7142444 - 财政年份:2004
- 资助金额:
$ 71.22万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7280411 - 财政年份:2004
- 资助金额:
$ 71.22万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6821586 - 财政年份:2004
- 资助金额:
$ 71.22万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6937215 - 财政年份:2004
- 资助金额:
$ 71.22万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6889992 - 财政年份:2002
- 资助金额:
$ 71.22万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
8078075 - 财政年份:2002
- 资助金额:
$ 71.22万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6620534 - 财政年份:2002
- 资助金额:
$ 71.22万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6418634 - 财政年份:2002
- 资助金额:
$ 71.22万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 71.22万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 71.22万 - 项目类别:
Operating Grants














{{item.name}}会员




