Machine learning of physiological variables to predict diagnose and treat cardiorespiratory instability
机器学习生理变量来预测诊断和治疗心肺不稳定
基本信息
- 批准号:9029396
- 负责人:
- 金额:$ 66.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAcuteAlgorithmsAnimalsAttentionBiological Neural NetworksCaliforniaCardiovascular systemCaringClassificationClinicalClinical DataClinical Decision Support SystemsClinical TreatmentComplexCoupledCritical IllnessDataData CollectionData SetDevelopmentDiagnosisDiseaseEffectivenessElectronic Health RecordEngineeringEntropyEnvironmentEtiologyFamily suidaeFrequenciesFutureHealthHealthcareHemorrhageHemorrhagic ShockHomeostasisHourHumanHypovolemiaIndividualInjuryInstitutionIntensive Care UnitsInterventionLeadLearningLibrariesMachine LearningMeasuresMechanical ventilationMedicalMedical centerModelingMonitorNormal RangeOrganOrgan failurePathologic ProcessesPatient MonitoringPatient-Focused OutcomesPatientsPatternPhysiologic MonitoringPhysiologicalPrincipal Component AnalysisProcessPublic HealthRecommendationRefractoryResolutionResourcesResuscitationRiskRunningSamplingSensitivity and SpecificitySepsisShockSignal TransductionSpecificityStreamStressSystemTechniquesTestingTimeTraumaTriageUniversitiesValidationVariantWeaningWorkabstractingbaseclinical careclinically relevantcomputerized data processingcostdatabase structuredensitydesigndiagnostic accuracyearly onseteffective therapyfitnessforestgraphical user interfacehemodynamicshigh riskimprovedimproved outcomeinsightiterative designmortalitynovel strategiespatient populationpersonalized medicinepredictive modelingpredictive toolsprospectiveprototyperesponsesimulationsupport toolstreatment response
项目摘要
Project Summary/Abstract: If one could accurately predict who, when and why patients develop
cardiorespiratory instability (CRI), then effective preemptive treatments could be given to improve outcome and
better use care resources. However, CRI is often unrecognized until it is well established and patients are
more refractory to treatment, or progressed to organ injury. We have shown that an integrated monitoring
system alert obtained from continuous noninvasively acquired monitoring parameters and coupled to a care
algorithm improved step-down unit (SDU) patient outcomes. We also showed that advanced HR variability
analysis (sample entropy) identified SDU patients at CRI risk within 2 minutes, and if monitored for 5 minutes
differentiated between patients who would develop CRI or remain stable over the next 48 hours. We also
applied machine learning (ML) modeling to our clinically-relevant porcine model of hemorrhagic shock to
characterize responses to hypovolemia, hemorrhage, and resuscitation, predict which animals would or would
not collapse during hypovolemia, and identify occult bleeding 5 minutes earlier than with traditional monitoring.
We now propose to apply our work to vulnerable and invasively monitored ICU patients. We will develop
multivariable models through ML data-driven classification techniques such as regression, Fourier and
principal component analysis, artificial neural networks, random forest classification, etc. as well as more novel
approaches (temporal rule learning developed by our team; Bayesian Aggregation) to predict CRI in ICU
patients. We will first use our existing annotated high fidelity waveform MIMIC II clinical data set (4200
patients) to develop predictive models and differential signatures for various CRI drivers. We will also use our
high-density data collection and processing platform (Bernoulli) to prospectively collect data from ICUs in three
institutions: Univ. Pittsburgh (PITT), Univ. California (UC) Irvine and UC San Diego (initial algorithm
development conducted at PITT and validated in the UC systems). We will identify the number and type of
independent measures, sampling frequency, and lead time necessary to create robust algorithms to: 1) predict
impending CRI, 2) select the most effective treatments, 3) monitor treatment response, and 4) determine when
treatment has restored physiologic stability and can be stopped. We will also determine the smallest number
and types of parameters coupled to the longest CRI lead time to achieve the above four targets with the best
sensitivity and specificity (a concept we call Monitoring Parsimony).We will simultaneously iteratively design
and test a graphical user interface (GUI) and clinical decision support system (CDSS) driven by these
parsimoniously derived predictive smart alerts and functional hemodynamic monitoring treatment approaches
in two human simulation environments (PITT & UC Irvine).We envision a basic monitoring surveillance that
identifies patients most likely to develop CRI to apply focused clinician attention and targeted treatments to
deliver highly personalized medical care.
项目摘要/摘要:如果能够准确预测患者的发病对象、时间和原因
心肺不稳定(CRI),然后可以给予有效的预防性治疗以改善结果和
更好地利用护理资源。然而,CRI 通常不会被认识到,直到它得到充分确立并且患者得到治疗为止。
更难以治疗,或进展为器官损伤。我们已经证明,综合监控
从连续无创获取的监测参数中获得系统警报并与护理相结合
算法改善了降压单元 (SDU) 患者的治疗效果。我们还表明高级心率变异性
如果监测 5 分钟,分析(样本熵)可在 2 分钟内识别出有 CRI 风险的 SDU 患者
区分会出现 CRI 或在接下来 48 小时内保持稳定的患者。我们也
将机器学习 (ML) 建模应用于临床相关的猪失血性休克模型
描述对低血容量、出血和复苏的反应,预测哪些动物会或将会
低血容量时不会崩溃,并且比传统监测提前 5 分钟发现隐匿性出血。
我们现在建议将我们的工作应用于弱势和侵入性监测的 ICU 患者。我们将开发
通过机器学习数据驱动的分类技术(例如回归、傅里叶和
主成分分析、人工神经网络、随机森林分类等以及更多新颖
预测 ICU 中 CRI 的方法(我们团队开发的时间规则学习;贝叶斯聚合)
患者。我们将首先使用我们现有的带注释的高保真波形 MIMIC II 临床数据集(4200
患者)来开发各种 CRI 驱动因素的预测模型和差异特征。我们还将使用我们的
高密度数据收集和处理平台(伯努利)前瞻性地从三个 ICU 收集数据
机构: 大学。匹兹堡 (PITT),大学。加利福尼亚州 (UC) 欧文分校和加州大学圣地亚哥分校(初始算法
开发在 PITT 进行并在 UC 系统中验证)。我们将确定的数量和类型
创建稳健算法所需的独立测量、采样频率和交付时间,以:1) 预测
即将发生的 CRI,2) 选择最有效的治疗方法,3) 监测治疗反应,以及 4) 确定何时
治疗已恢复生理稳定性,可以停止。我们还将确定最小的数字
以及参数类型与最长 CRI 前置时间相结合,以最佳方式实现上述四个目标
敏感性和特异性(我们称之为监控简约性的概念)。我们将同时迭代设计
并测试由这些驱动的图形用户界面(GUI)和临床决策支持系统(CDSS)
简约派生的预测智能警报和功能性血流动力学监测治疗方法
在两个人体模拟环境(PITT 和加州大学欧文分校)中。我们设想一个基本的监控
确定最有可能发生 CRI 的患者,以集中临床医生的注意力和有针对性的治疗
提供高度个性化的医疗服务。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL R PINSKY其他文献
MICHAEL R PINSKY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL R PINSKY', 18)}}的其他基金
Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
- 批准号:
9912846 - 财政年份:2019
- 资助金额:
$ 66.25万 - 项目类别:
Autonomous diagnosis and management of the critically ill during air transport (ADMIT)
航空运输中危重病人的自主诊断和管理(ADMIT)
- 批准号:
10359812 - 财政年份:2019
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7142444 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
7280411 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6821586 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Quantifying Left Ventricular Ejection Effectiveness
量化左心室射血效率
- 批准号:
6937215 - 财政年份:2004
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6889992 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
8078075 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6620534 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
Heart-Lung Interactions & Cardiovascular Insufficiency
心肺相互作用
- 批准号:
6418634 - 财政年份:2002
- 资助金额:
$ 66.25万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 66.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 66.25万 - 项目类别:
Standard Grant