Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
基本信息
- 批准号:10360435
- 负责人:
- 金额:$ 56.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-12-01 至 2023-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAnimalsBiochemistryBiodistributionBiologicalBiological MarkersBiological ProcessBiomedical ResearchCharacteristicsClinical ResearchCodeCollimatorComputational ScienceDetectionDevelopmentDiffuseDrug KineticsEpidermal Growth Factor ReceptorEvaluationFluorescenceFoundationsFutureGeometryGoalsHumanHybridsImageImaging DeviceImaging TechniquesImaging technologyIn VitroInformation SystemsKnowledgeLightMagnetic Resonance ImagingMeasurementMeasuresMechanicsMedicalMedicineMethodsModalityModificationMolecularMolecular ProbesMorphologic artifactsMusOpticsPatternPerformancePhotonsPhysicsRadioResearchResearch PersonnelResolutionRoentgen RaysSamplingSensitivity and SpecificitySeriesSignal TransductionSourceSurfaceSystemSystems DevelopmentSystems IntegrationTechniquesTestingTimeLineTissuesX-Ray Computed Tomographyanatomic imaginganimal imagingbasebiomedical imagingcancer imagingclinical applicationcostdata acquisitiondesigndetectorexperimental studyhuman imagingimage reconstructionimaging modalityimaging studyimaging systemin vivoinnovationinstrumentationinterestluminescencemalignant breast neoplasmmolecular imagingmultidisciplinarymultiplexed imagingnanoparticlenanophosphornoveloptical imagingprototypequantitative imagingquantumreconstructionscreeningsimulationtomographytooltransmission process
项目摘要
Dual Modality CT/X-ray Luminescence CT for in vivo Cancer Imaging
ABSTRACT
A combined X-ray CT and molecular imaging system, referred to as “CT/X-ray luminescence CT (XLCT)”, is
proposed. The system uses X-ray as a single source to image anatomy and molecular features from
simultaneous detection of luminescence signals of X-ray activatable molecular probes. In this technique, the
spatial information is obtained by exciting the sample using spatially selective X-ray patterns while optical
detectors placed around the sample measure luminescence photons diffusing out. Regardless of where these
photons are detected, it is known that they are created somewhere on the path of the coded X-ray beams. This
fundamental principle constitutes a new paradigm for imaging deep-seated light-emitting probes, with little
background from tissue auto-fluorescence. Another significant advantage of XLCT is that X-ray excitation is
amplified by orders of magnitude because of the extremely high quantum yield (2-4 orders of magnitude greater
than 100%) of the radioluminescent materials. Toward establishing XLCT for various biomedical applications
and eventually for clinical applications, we have assembled a multidisciplinary team consisting of leading
investigators with expertise in CT imaging, molecular imaging, biochemistry, medical physics, computational
science, and medicine, and established research themes that unify the common interests and expertise of these
investigators. If successful, the hybrid CT/XLCT will overcome many of the limitations of CT and optical
imaging methods and enable us to visualize biological processes in the anatomical CT image context with
unprecedented sensitivity, specificity and spatial resolution. The novel dual modality imaging strategy will
therefore significantly advance the field of cancer imaging and provide a valuable imaging tool for biological
and clinical studies.
双模CT/X射线发光CT在活体肿瘤成像中的应用
摘要
一种X射线CT和分子成像相结合的系统,称为CT/X射线发光CT(XLCT),是
建议。该系统使用X射线作为单一来源来成像来自
X射线可激活分子探针发光信号的同时检测。在这种技术中,
空间信息是通过在光学的同时使用空间选择性的X射线图案来激励样品来获得的
放置在样品周围的探测器测量扩散出来的发光光子。不管这些东西在哪里
当探测到光子时,我们知道它们是在编码的X射线束路径上的某个地方产生的。这
基本原理构成了对深层发光探测器成像的新范例,几乎没有
背景来自组织的自体荧光。XLCT的另一个显著优势是X射线激发
由于极高的量子产额(大2-4个数量级)而放大了数量级
超过100%)的放射性发光材料。为各种生物医学应用建立XLCT
最终,在临床应用方面,我们组建了一个多学科团队,由领先的
具有CT成像、分子成像、生物化学、医学物理、计算等专业知识的研究人员
科学和医学,并建立了研究主题,统一了这些人的共同兴趣和专业知识
调查人员。如果成功,混合CT/XLCT将克服CT和光学的许多限制
成像方法,并使我们能够在解剖CT图像上下文中可视化生物过程
前所未有的灵敏度、特异度和空间分辨率。新的双模式成像策略将
因此大大推进了肿瘤成像领域,为生物医学提供了一种有价值的成像工具
和临床研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Xing其他文献
Lei Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Xing', 18)}}的其他基金
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
- 批准号:
10579754 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Development of AI-Augmented quality assurance tools for radiation therapy
开发用于放射治疗的人工智能增强质量保证工具
- 批准号:
10558155 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10617647 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10374171 - 财政年份:2021
- 资助金额:
$ 56.91万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10530681 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10160833 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10089148 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10418642 - 财政年份:2018
- 资助金额:
$ 56.91万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
9269990 - 财政年份:2014
- 资助金额:
$ 56.91万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
8643085 - 财政年份:2014
- 资助金额:
$ 56.91万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 56.91万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 56.91万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 56.91万 - 项目类别:
Research Grant














{{item.name}}会员




