Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
基本信息
- 批准号:10617647
- 负责人:
- 金额:$ 42.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAffectBrainClinicalComplicationDataData SetDetectionDevelopmentDisciplineDiseaseDoseDuodenumHead and neck structureHemorrhageImageImplantInfectionIntensity-Modulated RadiotherapyInvestigationLeadLearningLiverLocationLungMalignant NeoplasmsMalignant neoplasm of pancreasMethodsModelingModernizationModificationMonitorMotionNatureNeoplasmsNormal tissue morphologyOrganPancreasPatient CarePatientsPerformancePositioning AttributeProbabilityProceduresProcessProstateProstate Cancer therapyRadiation Dose UnitRadiation OncologyRadiation therapyRadiosurgeryResearchRetrospective StudiesRoentgen RaysSiteSystemTechniquesTimeTrainingUncertaintyVertebral columnVisualizationX-Ray Computed TomographyX-Ray Medical Imagingcancer typecone-beam computed tomographyconventional therapyconvolutional neural networkcostdeep learningdeep learning algorithmdeep learning modelexperimental studyimage guidedimage guided interventionimage guided radiation therapyimprovedindexinglearning strategynovelpancreas imagingpancreas radiation therapypredictive modelingreal time modelrespiratorytreatment planningtumor
项目摘要
Leveraging deep learning for markerless motion management in radiation therapy
Project Summary
Organ motion is a predominant limiting factor for the maximum exploitation of modern radiation therapy
(RT). Adverse influence of the organ motion is aggravated in hypofractionated treatment because of
protracted dose delivery. Current image guided RT often relies on the use of implanted fiducial markers
(FMs) for online/offline target localization, which is invasive and costly, and introduces possible
bleeding, infection and discomfort of the patient. In this project, we harness the enormous potential of
deep learning and investigate a novel markerless localization strategy by combined use of a pre-trained
deep learning model and kV X-ray projection or cone beam CT images. We hypothesize that incorporation
of deep layers of image information allows us to visualize otherwise invisible target in real-time and greatly
reduce the uncertainties in beam targeting. Specific aims of the project are to: (1) Develop a DL-based
tumor target localization framework for image guided RT (IGRT); (2) Apply the DL-based strategy to
localize prostate target on 2D kV X-ray projection and 3D CBCT images; and (3) Evaluate the potential
clinical impact of the DL strategy for pancreatic IGRT. This study brings up, for the first time, highly
accurate markerless target localization based on deep learning and provides a clinically sensible solution
for IGRT of prostate and pancreas cancers or other types of cancers. Successful completion of this
investigation will significantly advance the current beam targeting technique and provide radiation
oncology discipline a powerful way to safely and reliably escalate the radiation dose for precision RT.
Given its significant promise to optimally cater for inter- and intra-fractional uncertainties, the study
should lead to substantial improvement in patient care and enables us to utilize maximally the technical
capability of modern RT such as IMRT and VMAT. Given the dose responsive nature of various cancers and
that the proposed method requires no hardware modification, this research should lead to a widespread impact
on the management of neoplasmic diseases affected by organ motion.
利用深度学习进行放射治疗中的无标记运动管理
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Xing其他文献
Lei Xing的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Xing', 18)}}的其他基金
Improving the Safety and Quality of Eye Plaque Brachytherapy by Assembly with Intensity Modulated Loading
通过调强加载组装提高眼斑近距离治疗的安全性和质量
- 批准号:
10579754 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Development of AI-Augmented quality assurance tools for radiation therapy
开发用于放射治疗的人工智能增强质量保证工具
- 批准号:
10558155 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Leveraging deep learning for markerless motion management in radiation therapy
利用深度学习进行放射治疗中的无标记运动管理
- 批准号:
10374171 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10530681 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10160833 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10089148 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Radioluminescence dosimetry solution for precision radiation therapy
用于精准放射治疗的放射发光剂量测定解决方案
- 批准号:
10418642 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
Dual Modality X-ray Luminescence CT for in vivo Cancer Imaging
用于体内癌症成像的双模态 X 射线发光 CT
- 批准号:
10360435 - 财政年份:2018
- 资助金额:
$ 42.42万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
9269990 - 财政年份:2014
- 资助金额:
$ 42.42万 - 项目类别:
DASSIM-RT and Compressed Sensing-Based Inverse Planning
DASSIM-RT 和基于压缩感知的逆规划
- 批准号:
8643085 - 财政年份:2014
- 资助金额:
$ 42.42万 - 项目类别:
相似海外基金
Understanding how psychedelic drugs affect brain and behaviour in rodents
了解迷幻药物如何影响啮齿类动物的大脑和行为
- 批准号:
2897454 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Studentship
Does Vision Loss Affect Tauopathy in the Brain
视力丧失是否会影响大脑中的 Tau 蛋白病
- 批准号:
10670631 - 财政年份:2023
- 资助金额:
$ 42.42万 - 项目类别:
Neuroplasticity in songbirds: how changing behaviour and experience affect learning and the brain
鸣禽的神经可塑性:行为和经验的变化如何影响学习和大脑
- 批准号:
RGPIN-2018-04060 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Discovery Grants Program - Individual
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Discovery Grants Program - Individual
Peering into the future of neuroscience: how visual cues are processed in the avian brain to affect locomotion
展望神经科学的未来:鸟类大脑如何处理视觉线索以影响运动
- 批准号:
559062-2021 - 财政年份:2022
- 资助金额:
$ 42.42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Peering into the future of neuroscience: how visual cues are processed in the avian brain to affect locomotion
展望神经科学的未来:鸟类大脑如何处理视觉线索以影响运动
- 批准号:
559062-2021 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
How does environmental enrichment affect brain development?
丰富的环境如何影响大脑发育?
- 批准号:
DP210102473 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Discovery Projects
Neuroplasticity in songbirds: how changing behaviour and experience affect learning and the brain
鸣禽的神经可塑性:行为和经验的变化如何影响学习和大脑
- 批准号:
RGPIN-2018-04060 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Discovery Grants Program - Individual
Understanding brain maturation: How spontaneous cortical high frequency oscillations develop and affect executive function during childhood
了解大脑成熟:自发皮质高频振荡如何发展并影响儿童时期的执行功能
- 批准号:
RGPIN-2021-02948 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Discovery Grants Program - Individual
Does menthol affect nicotine's impact on brain reinforcement mechanisms in dependent and nondependent users of electronic nicotine delivery systems?
薄荷醇是否会影响尼古丁对电子尼古丁输送系统的依赖和非依赖用户的大脑强化机制的影响?
- 批准号:
445102 - 财政年份:2021
- 资助金额:
$ 42.42万 - 项目类别:
Operating Grants