Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
基本信息
- 批准号:10364871
- 负责人:
- 金额:$ 57.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnatomyArtificial IntelligenceAtlasesAxonBlindnessCaringClinicalClinical TrialsComplexCountryCox Proportional Hazards ModelsDataDeveloping CountriesDevelopmentDiagnosisDiseaseElderlyEvaluationEyeFunctional disorderFundusFutureGeneticGenetic MarkersGlaucomaGrowthHereditary DiseaseHigh PrevalenceImageIncidenceIndividualLeadMachine LearningModalityModelingNerve DegenerationOcular HypertensionOlder PopulationOphthalmologistOptic DiskOutcomeParticipantPatientsPatternPersonsPhenotypePopulationPrevalencePrimary Open Angle GlaucomaResolutionResourcesRetinaRiskRisk FactorsScreening procedureSideSingle Nucleotide PolymorphismSpecific qualifier valueSurrogate EndpointTestingValidationVisual FieldsWorkaging populationarchetypal analysisbasecare burdencase controlclinical careclinical practiceclinically relevantdeep learningdeep learning modeldemographicsendophenotypeexperiencefield studygenome wide association studyhigh riskhypertension treatmentimprovedmachine learning modelmultimodalitynovelnovel markerocular imagingpopulation basedpredictive modelingpreventretinal ganglion cell degenerationretinal nerve fiber layerscreeningsight restorationstatistical and machine learningtool
项目摘要
Glaucoma is a complex neurodegenerative blinding disease that causes the degeneration of retinal ganglion
cells and their axons. The prevalence of glaucoma is projected to increase by almost 50% over the next two
decades as older people making up the fastest growing part of the global population. The burden of glaucoma
care will therefore continue to grow, without a competing increase in the number of ophthalmologists or
available resources. As a result, the required demand for glaucoma care will likely exceed capacity and
resources leading to prioritizing care for those patients at highest risk of vision loss. There is no concrete
evidence in support of an individual test, or group of tests, that show superiority for identifying people at-risk of
developing glaucoma or those at higher risk of glaucoma progression. Glaucoma risk factors are too
insensitive in identifying individuals who will likely develop glaucoma. Fundus photographs lack detailed and
high-resolution information of the optic disc and surrounding retinal nerve fiber layer for glaucoma assessment
and visual field tests provide surprisingly inconsistent and variable results, especially in subclinical glaucoma
and in patients with more severe visual field loss (both sides of glaucoma spectrum). Although glaucoma is a
highly inheritable disease, genetic factors yet explain only slight segment of all glaucoma. Reliable and
accurate models for detecting individuals at higher risk of visual loss is an unmet need. We propose to use
artificial intelligence (AI) constructs to discover visual field and imaging signatures of glaucoma and synthesize
these signatures with classic risk factors and genetic data to identify individuals at-risk of developing glaucoma
and future vision loss. The central hypothesis of this proposal is that AI applied to fundus photographs, visual
fields and genetic factors may recognize and quantify the glaucoma-induced signs, yielding better signatures
for glaucoma development and vision loss compared to current subjectively specified or conventionally
identified features. As such, we will develop AI models to predict glaucoma from fundus photographs and
visual fields then extract fundus and visual field endophenotypes (signatures) of glaucoma. We will then
develop genome-wide association study (GWAS) and machine learning models to address underpower GWAS
limitation and develop AI models to predict glaucoma from identified genetic markers. We finally develop an AI
construct to synthesizes the discovered fundus and visual field signatures with classic glaucoma risk factors
and genetic data to predict glaucoma. This AI construct can work with any or all of these modalities as well
thus providing a potential tool for screening purposes as well. To achieve these objectives, we have assembled
a team of interdisciplinary experts with access to large clinically annotated multi-modal glaucoma data.
Our proposed studies will potentially uncover novel genetic factors of glaucoma as well as visual field and
imaging endophenotypes of glaucoma that may serve as surrogate endpoints to improve glaucoma clinical
trials and offer improvements in identifying individuals at-risk of developing glaucoma and future vision loss.
青光眼是一种复杂的神经退行性致盲疾病,导致视网膜神经节变性。
细胞和它们的轴突。在接下来的两年中,青光眼的患病率预计将增加近50%。
几十年来,老年人口构成了全球人口增长最快的部分。青光眼的负担
因此,护理将继续增长,而眼科医生或
可用的资源。因此,青光眼护理所需的需求可能会超过能力,
为那些视力丧失风险最高的患者确定护理优先顺序的资源。没有具体的东西
支持一项或一组测试的证据,这些测试显示了在识别高危人群方面的优越性
发展中的青光眼或青光眼进展的高危人群。青光眼的危险因素也是
在识别可能发展为青光眼的个体时不敏感。眼底照片缺乏细节和
视盘及周围视网膜神经纤维层的高分辨率信息在青光眼评估中的应用
视野测试提供了令人惊讶的不一致和可变的结果,特别是在亚临床青光眼中
而在视野丧失更严重的患者(青光眼谱的两侧)。尽管青光眼是一个
高度可遗传的疾病,遗传因素仍然只解释了所有青光眼的一小部分。可靠且
用于检测视力丧失风险较高的个体的准确模型是一个尚未得到满足的需求。我们建议使用
人工智能(AI)构建来发现青光眼的视野和成像特征并合成
这些带有经典风险因素和遗传数据的签名可以识别有发展为青光眼风险的个体
以及未来的视力丧失。这一提议的中心假设是人工智能应用于眼底照片,视觉
田野和遗传因素可以识别和量化青光眼诱导的体征,产生更好的体征
与目前主观或常规规定的青光眼发展和视力丧失相比
已确定的功能。因此,我们将开发人工智能模型来根据眼底照片和
然后视野提取青光眼的眼底和视野内表型(信号)。到时候我们会的
开发全基因组关联研究和机器学习模型,以解决全基因组关联研究能力不足的问题
限制并开发人工智能模型以根据已识别的遗传标记预测青光眼。我们终于开发了一种人工智能
构建将已发现的眼底和视野信号与经典的青光眼危险因素相结合
和基因数据来预测青光眼。该AI构造也可以与这些通道中的任何一个或所有通道一起工作
从而也为筛选目的提供了一种潜在的工具。为了实现这些目标,我们聚集在一起
一个跨学科专家团队,可以访问大量临床注释的多模式青光眼数据。
我们拟议的研究可能会揭示青光眼的新遗传因素以及视野和
青光眼内表型成像可作为改善青光眼临床的替代终点
并在识别青光眼和未来视力丧失的风险个体方面提供改进。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siamak Yousefi其他文献
Siamak Yousefi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siamak Yousefi', 18)}}的其他基金
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10683037 - 财政年份:2022
- 资助金额:
$ 57.38万 - 项目类别:
Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
- 批准号:
10597998 - 财政年份:2022
- 资助金额:
$ 57.38万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10043768 - 财政年份:2020
- 资助金额:
$ 57.38万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10242048 - 财政年份:2020
- 资助金额:
$ 57.38万 - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 57.38万 - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
$ 57.38万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




