Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
基本信息
- 批准号:10683037
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptedAffectAlgorithmsArtificial IntelligenceAxonBig Data to KnowledgeClinicalClinical TrialsCommunitiesComplementComputer SystemsConsensusDataData AnalysesData SetDetectionDiagnosisDiseaseEarly DiagnosisEyeFloorGlaucomaGoalsHealthHigh Performance ComputingImageIncidenceKnowledgeLearningLinear RegressionsLocationMachine LearningMapsMeasurementMeasuresMethodsModelingMonitorOphthalmologyOptic DiskOptic NerveOptical Coherence TomographyOutcomePatientsPatternPersonsPrincipal Component AnalysisPrognosisQuality of lifeReproducibilityResearchRetinal Ganglion CellsSavingsScanningSeveritiesSpecific qualifier valueSpecificitySystemTechniquesTechnologyTest ResultTestingTreatment CostUnited States National Institutes of HealthVisionVisualVisual FieldsVisualizationVisualization softwarebasecomputerized toolsdashboardfield studyglaucoma testhands-on learningimprovedlarge datasetslongitudinal datasetmultidimensional dataopen source toolpreservationretinal nerve fiber layerthree-dimensional visualizationtreatment strategyunsupervised learning
项目摘要
Detecting functional and structural loss due to glaucoma is critical to making treatment decisions with the goal
of preserving vision and maintaining quality of life. However, most of the approaches for glaucoma assessment
through visual fields (VFs) or optical coherence tomography (OCT) measurements have several limitations that
poses critical challenge to their clinical utility.
Identifying glaucoma-induced changes from a sequence of VF or OCT data is challenging either if the patients
is in the early stages of the disease with subtle manifested structural and functional signs or if the patients are
in the later stages of the disease with significant VF variability and OCT flooring effect. A major limitation of
the current glaucoma monitoring techniques is that they generate a binary outcome of whether the glaucoma is
worsening or not while current high-throughput data (e.g., OCT) has more information than a binary outcome.
Another major drawback of some of these approaches is that they rely on traditional paradigms for progression
detection such as linear regression. However, rates of glaucomatous progression may be non-linear and rapid,
particularly during the later stages of the disease. Another limitation is that ad-hoc rules are adopted to define
glaucoma progression while objective criteria are required to define thresholds for progression. Finally, a major
deficiency of most of these methods is that they lack advanced visualization and interpretation.
We propose to address these limitations by developing artificial intelligence (AI)-enabled visualization tools for
effectively monitoring the functional and structural loss in patients with glaucoma. This approach provides
qualitative and quantitative means to monitor 1) global visual functional and structural worsening, 2) extent of
loss in hemifields, and 3) local patterns of functional and structural loss on advanced 2-D visualization tools. To
achieve these objectives, we have assembled a team of interdisciplinary experts with access to large clinically
annotated glaucoma data.
The central hypothesis of this proposal is that advanced interpretable machine learning applied to a complete
profile of VFs in all test locations (e.g., 54 in 24-2 system) and OCT-derived measurements of retinal nerve
fiber layer (RNFL) (e.g., 768 A-scans around the optic disc and 7 global sectoral regions) can objectively and
automatically learn and quantify the most important features, yielding a more specific and sensitive means for
monitoring of glaucoma worsening than current subjectively-specified or statistically-identified approaches.
We also hypothesize that machine learning can provide interpretable models with several layers of glaucoma
knowledge that may provide a promising complement to current glaucoma assessment tests.
Our proposed studies may offer substantial improvements in prognosis and management of glaucoma through
effective use of analysis and visualization to improve glaucoma management and making more informed
treatment options.
检测青光眼引起的功能和结构损失对于做出治疗决定至关重要,
保护视力和维持生活质量。然而,大多数青光眼评估方法
通过视野(VF)或光学相干断层扫描(OCT)测量具有几个局限性,
对它们的临床应用提出了严峻的挑战。
从VF或OCT数据序列中识别脑卒中引起的变化具有挑战性,
处于疾病的早期阶段,具有微妙的结构和功能体征,或者如果患者
在疾病的后期阶段,具有显著的VF变异性和OCT地板效应。的主要限制
目前的青光眼监测技术是它们产生青光眼是否
恶化与否而当前的高吞吐量数据(例如,OCT)比二元结果具有更多的信息。
这些方法的另一个主要缺点是它们依赖于传统的发展模式
检测,如线性回归。然而,昏迷进展的速率可能是非线性的和快速的,
特别是在疾病的后期阶段。另一个限制是,采用特别规则来界定
青光眼进展,而需要客观标准来定义进展的阈值。最后,一个主要
这些方法中的大多数的不足之处在于它们缺乏先进的可视化和解释。
我们建议通过开发支持人工智能(AI)的可视化工具来解决这些限制,
有效监测青光眼患者的功能和结构损失。这种方法提供
监测1)整体视觉功能和结构恶化的定性和定量方法,2)
半野的损失,和3)先进的2-D可视化工具上的功能和结构损失的局部模式。到
为了实现这些目标,我们组建了一个跨学科专家团队,可以访问大型临床
注释的青光眼数据。
该提案的中心假设是,先进的可解释机器学习应用于一个完整的
所有测试位置的VF分布(例如,24-2系统中的54个)和OCT衍生的视网膜神经测量
纤维层(RNFL)(例如,768 A扫描周围的视盘和7个全球部门区域)可以客观和
自动学习和量化最重要的特征,从而产生更具体和敏感的方法,
监测青光眼恶化比目前主观指定或诊断确定的方法。
我们还假设机器学习可以提供具有几层青光眼的可解释模型
这些知识可能为当前青光眼评估测试提供有希望的补充。
我们提出的研究可能会提供实质性的改善预后和青光眼的管理,
有效利用分析和可视化来改善青光眼管理,
治疗方案。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Artificial Intelligence and Glaucoma: Illuminating the Black Box.
人工智能和青光眼:照亮黑匣子。
- DOI:10.1016/j.ogla.2020.04.008
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Yousefi,Siamak;Pasquale,LouisR;Boland,MichaelV
- 通讯作者:Boland,MichaelV
Identifying factors associated with fast visual field progression in patients with ocular hypertension based on unsupervised machine learning
- DOI:10.48550/arxiv.2309.15867
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Xiaoqin Huang;Asma Poursoroush;Jian Sun;Michael V. Boland;Chris Johnson;Siamak Yousefi
- 通讯作者:Xiaoqin Huang;Asma Poursoroush;Jian Sun;Michael V. Boland;Chris Johnson;Siamak Yousefi
An Artificial Intelligence Enabled System for Retinal Nerve Fiber Layer Thickness Damage Severity Staging.
- DOI:10.1016/j.xops.2023.100389
- 发表时间:2024-03
- 期刊:
- 影响因子:0
- 作者:Yousefi, Siamak;Huang, Xiaoqin;Poursoroush, Asma;Majoor, Julek;Lemij, Hans;Vermeer, Koen;Elze, Tobias;Wang, Mengyu;Nouri-Mahdavi, Kouros;Mohammadzadeh, Vahid;Brusini, Paolo;Johnson, Chris
- 通讯作者:Johnson, Chris
ChatGPT Assisting Diagnosis of Neuro-ophthalmology Diseases Based on Case Reports.
ChatGPT 基于病例报告辅助诊断神经眼科疾病。
- DOI:10.1101/2023.09.13.23295508
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Madadi,Yeganeh;Delsoz,Mohammad;Lao,PriscillaA;Fong,JosephW;Hollingsworth,TJ;Kahook,MalikY;Yousefi,Siamak
- 通讯作者:Yousefi,Siamak
Estimating the Severity of Visual Field Damage From Retinal Nerve Fiber Layer Thickness Measurements With Artificial Intelligence.
- DOI:10.1167/tvst.10.9.16
- 发表时间:2021-08-02
- 期刊:
- 影响因子:3
- 作者:Huang X;Sun J;Majoor J;Vermeer KA;Lemij H;Elze T;Wang M;Boland MV;Pasquale LR;Mohammadzadeh V;Nouri-Mahdavi K;Johnson C;Yousefi S
- 通讯作者:Yousefi S
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siamak Yousefi其他文献
Siamak Yousefi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siamak Yousefi', 18)}}的其他基金
Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
- 批准号:
10364871 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
- 批准号:
10597998 - 财政年份:2022
- 资助金额:
$ 10万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10043768 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10242048 - 财政年份:2020
- 资助金额:
$ 10万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 10万 - 项目类别:
Research Grant