Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
基本信息
- 批准号:10597998
- 负责人:
- 金额:$ 44.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-04-01 至 2027-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAnatomyArtificial IntelligenceAtlasesAxonBlindnessCaringClinicalClinical TrialsComplexCountryCox Proportional Hazards ModelsDataDeveloping CountriesDevelopmentDiagnosisDiseaseElderlyEvaluationEyeFunctional disorderFundusFutureGeneticGenetic MarkersGlaucomaGrowthHereditary DiseaseHigh PrevalenceImageIncidenceIndividualMachine LearningMapsModalityModelingNerve DegenerationOcular HypertensionOlder PopulationOphthalmologistOptic DiskOutcomeParticipantPatientsPatternPersonsPhenotypePopulationPopulations at RiskPrevalencePrimary Open Angle GlaucomaResolutionResourcesRetinaRiskRisk FactorsScreening procedureSideSingle Nucleotide PolymorphismSpecific qualifier valueSurrogate EndpointTestingValidationVisual FieldsWorkaging populationarchetypal analysiscare burdenclinical careclinical practiceclinically relevantdeep learningdeep learning modeldemographicsendophenotypeexperiencefield studygenome wide association studyhigh riskhypertension treatmentimprovedmachine learning modelmultimodalitynovelnovel markeroptical discpopulation basedpredictive modelingpreventretinal ganglion cell degenerationretinal nerve fiber layerrisk predictionscreeningsight restorationstatistical and machine learningstatistical learningtoolusability
项目摘要
Glaucoma is a complex neurodegenerative blinding disease that causes the degeneration of retinal ganglion
cells and their axons. The prevalence of glaucoma is projected to increase by almost 50% over the next two
decades as older people making up the fastest growing part of the global population. The burden of glaucoma
care will therefore continue to grow, without a competing increase in the number of ophthalmologists or
available resources. As a result, the required demand for glaucoma care will likely exceed capacity and
resources leading to prioritizing care for those patients at highest risk of vision loss. There is no concrete
evidence in support of an individual test, or group of tests, that show superiority for identifying people at-risk of
developing glaucoma or those at higher risk of glaucoma progression. Glaucoma risk factors are too
insensitive in identifying individuals who will likely develop glaucoma. Fundus photographs lack detailed and
high-resolution information of the optic disc and surrounding retinal nerve fiber layer for glaucoma assessment
and visual field tests provide surprisingly inconsistent and variable results, especially in subclinical glaucoma
and in patients with more severe visual field loss (both sides of glaucoma spectrum). Although glaucoma is a
highly inheritable disease, genetic factors yet explain only slight segment of all glaucoma. Reliable and
accurate models for detecting individuals at higher risk of visual loss is an unmet need. We propose to use
artificial intelligence (AI) constructs to discover visual field and imaging signatures of glaucoma and synthesize
these signatures with classic risk factors and genetic data to identify individuals at-risk of developing glaucoma
and future vision loss. The central hypothesis of this proposal is that AI applied to fundus photographs, visual
fields and genetic factors may recognize and quantify the glaucoma-induced signs, yielding better signatures
for glaucoma development and vision loss compared to current subjectively specified or conventionally
identified features. As such, we will develop AI models to predict glaucoma from fundus photographs and
visual fields then extract fundus and visual field endophenotypes (signatures) of glaucoma. We will then
develop genome-wide association study (GWAS) and machine learning models to address underpower GWAS
limitation and develop AI models to predict glaucoma from identified genetic markers. We finally develop an AI
construct to synthesizes the discovered fundus and visual field signatures with classic glaucoma risk factors
and genetic data to predict glaucoma. This AI construct can work with any or all of these modalities as well
thus providing a potential tool for screening purposes as well. To achieve these objectives, we have assembled
a team of interdisciplinary experts with access to large clinically annotated multi-modal glaucoma data.
Our proposed studies will potentially uncover novel genetic factors of glaucoma as well as visual field and
imaging endophenotypes of glaucoma that may serve as surrogate endpoints to improve glaucoma clinical
trials and offer improvements in identifying individuals at-risk of developing glaucoma and future vision loss.
青光眼是一种复杂的神经退行性致盲性疾病,它导致视网膜神经节变性
细胞和它们的轴突青光眼的患病率预计将在未来两年增加近50%,
几十年来,老年人是全球人口中增长最快的部分。青光眼的危害
因此,护理将继续增长,而不会增加眼科医生的数量,
现有资源。因此,对青光眼护理的需求可能会超过能力,
资源导致优先照顾那些患者在视力丧失的最高风险。没有具体
支持单个测试或一组测试的证据,这些测试显示出识别有风险的人的优势。
发展中的青光眼或青光眼进展风险较高的患者。青光眼的危险因素也
在识别可能患青光眼的个体方面不敏感。眼底照片缺乏细节,
高分辨率视盘和周围视网膜神经纤维层信息用于青光眼评估
和视野测试提供了令人惊讶的不一致和可变的结果,特别是在亚临床青光眼中
并且在具有更严重的视野丧失的患者中(青光眼光谱的两侧)。虽然青光眼是一种
高度遗传性疾病,遗传因素仅能解释所有青光眼中的一小部分。可靠和
用于检测具有较高视力丧失风险的个体的精确模型是一种未满足的需求。我们建议使用
人工智能(AI)构建,以发现青光眼的视野和成像特征,
这些签名与经典的风险因素和遗传数据,以确定个人在发展青光眼的风险
和未来视力丧失。这项提议的中心假设是,人工智能应用于眼底照片,视觉
磁场和遗传因素可以识别和量化脑卒中引起的症状,
与当前主观规定或常规规定相比,
识别特征。因此,我们将开发人工智能模型,从眼底照片预测青光眼,
视野然后提取青光眼的眼底和视野内表型(特征)。然后我们将
开发全基因组关联研究(GWAS)和机器学习模型,以解决GWAS不足的问题
限制和开发AI模型来预测青光眼从确定的遗传标记。我们终于开发出一种人工智能
将发现的眼底和视野特征与经典青光眼风险因素相结合
和遗传数据来预测青光眼。这个人工智能结构也可以与任何或所有这些模态一起工作
因此也提供了用于筛选目的的潜在工具。为了实现这些目标,我们聚集了
一个跨学科的专家团队,可以访问大量临床注释的多模式青光眼数据。
我们提出的研究将潜在地揭示青光眼以及视野的新遗传因素,
青光眼的内表型成像可作为替代终点,以改善青光眼临床
试验,并提供改进,以确定个人的风险发展青光眼和未来的视力丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siamak Yousefi其他文献
Siamak Yousefi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siamak Yousefi', 18)}}的其他基金
Predicting the risk of glaucoma from structural, functional, and genetic factors using artificial intelligence
利用人工智能从结构、功能和遗传因素预测青光眼风险
- 批准号:
10364871 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10683037 - 财政年份:2022
- 资助金额:
$ 44.39万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10043768 - 财政年份:2020
- 资助金额:
$ 44.39万 - 项目类别:
Improved Glaucoma Monitoring Using Artificial-Intelligence Enabled Dashboard
使用人工智能仪表板改进青光眼监测
- 批准号:
10242048 - 财政年份:2020
- 资助金额:
$ 44.39万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 44.39万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 44.39万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 44.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 44.39万 - 项目类别:
Studentship