Leveraging Latent Factors and Machine Learning to Forecast Internalizing Psychopathology in Emerging Adulthood
利用潜在因素和机器学习来预测成年初期的内化精神病理学
基本信息
- 批准号:10366892
- 负责人:
- 金额:$ 76.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-10 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAgeAnhedoniaAnxietyAnxiety DisordersArousalBehaviorBehavioralClinicalCognitionComplexCounselingData SetDevelopmentDiagnosisDimensionsDiseaseDropoutEnrollmentEnvironmentEtiologyEvaluationEventExposure toFutureGoalsHealthHypersensitivityImpairmentIncidenceIndividualIndividual DifferencesInterventionInvestigationLifeLinkLongitudinal StudiesMachine LearningManicMeasuresMental DepressionMental HealthMethodologyModelingMood DisordersNegative ValenceNeurocognitionNeurocognitiveOutcomeParticipantPathologyPathway interactionsPatient Self-ReportPerformancePersonsPhenotypePhysiologicalPhysiologyPositive ValencePsychopathologyPublic HealthRecording of previous eventsResearchResearch Domain CriteriaRewardsRiskRisk BehaviorsRisk FactorsRisk MarkerSample SizeSamplingSex DifferencesStatistical ModelsStressStudentsSymptomsTargeted ResearchTechniquesTechnologyTestingTimeTranslatingWithdrawalanxiousapproach behaviorbiobehaviorclinical practiceclinical translationclinically significantcognitive controlcognitive functioncollegecomorbiditydiagnostic platformdiariesemerging adultemerging adulthoodemotion regulationexecutive functionexperiencehigh rewardin vivomaladaptive behaviormobile applicationnoveloutcome predictionprecision medicinepredictive modelingpredictive toolspreventive interventionrecruitresponsescreeningsexsocialstressortooluniversity studentyoung adult
项目摘要
Project Summary
Mood and anxiety disorders are common and highly comorbid conditions with peak incidence in emerging
adulthood (~ages 18-23). Developmental psychopathology models suggest that vulnerability to internalizing
disorders in emerging adults is driven by interactions between still maturing self-regulatory abilities (as
executive function [EF] continues to mature into young adulthood), and individual differences in reward and
threat sensitivity. Together, this highlights the importance of complex neurocognitive profiles consisting of
abnormalities across these three RDoC constructs for internalizing disorders. However, prior research has
largely investigated these constructs individually, in relation to individual disorders or symptom dimensions.
Given the high co-occurrence and complex multi-causality of internalizing psychopathology, the critical next step
is to build a framework for understanding how these neurocognitive dimensions interact to predict
transdiagnostic person-specific symptom trajectories. The proposed study aims to advance this precision
medicine goal, by evaluating how the neurocognitive dimensions of EF, reward and threat sensitivity interact to
produce risk phenotypes; and by using machine learning techniques to identify the most parsimonious set of risk
markers (across units of analysis) that forecast psychopathology. This longitudinal study will recruit a final
sample of 480 emerging adults during the transition to college, when stress and psychopathology risk increase,
to test risk pathways for transdiagnostic (common across internalizing symptoms) and specific (anhedonia,
anxious arousal, mania) internalizing dimensions, using a methodologically rigorous latent variable approach.
Our first aim is to test interactions among the neurocognitive dimensions of executive function, threat sensitivity
and reward sensitivity as risk mechanisms for transdiagnostic and specific internalizing symptom profiles and
trajectories. We hypothesize that poor EF is a transdiagnostic risk factor, with specific symptom profile
depending on threat (contributing to anxious arousal) and reward (contributing to anhedonia or mania)
sensitivity, and different maladaptive behaviors (e.g., social withdrawal vs. risky behavior). Our second aim is to
perform automated risk profiling, using machine learning to determine most parsimonious set of units that
predict outcome– a key objective for future clinical translation for screening for internalizing psychopathology
risk. Strengths of this approach include model-driven dimensional constructs of cognitive control, negative and
positive valence, spanning units of analysis (physiology, behavior, self-report) at a critical developmental risk
period. The robust sample size enables a rigorous statistical modeling approach and testing of moderating
influences (e.g., sex). By elucidating interactions between neurocognitive risks and the specific biobehavioral
mechanisms involved, we can make a novel impact that will be critical for developing translational tools that
predict person-specific symptom trajectories, informing future diagnostic systems (RDoC priority) and
personalizing promising interventions (which risk mechanisms to target for intervention, and for whom).
项目摘要
心境障碍和焦虑障碍是常见的高度共病的条件与高峰发病率在新兴
成年期(~18 - 23岁)。发展性精神病理学模型表明,
新兴成年人的疾病是由仍然成熟的自我调节能力(如
执行功能[EF]继续成熟到年轻的成年期),以及奖励和
威胁敏感度总之,这突出了复杂的神经认知特征的重要性,
这三种RDoC构建体之间的异常用于内化病症。然而,先前的研究已经
在很大程度上研究了这些结构单独,与个别疾病或症状的维度。
考虑到内化精神病理学的高度共现性和复杂的多重因果关系,关键的下一步是
是建立一个框架来理解这些神经认知维度是如何相互作用来预测
transdiagnosis个人特异性症状轨迹。拟议的研究旨在提高这种精度
医学目标,通过评估EF,奖励和威胁敏感性的神经认知维度如何相互作用,
产生风险表型;并通过使用机器学习技术来识别最简约的风险集
预测精神病理学的标记(跨分析单元)。这项纵向研究将招募一名最终
在向大学过渡期间,当压力和精神病理学风险增加时,
为了测试转诊断(在内化症状中常见)和特异性(快感缺乏,
焦虑,躁狂)内化维度,使用方法学上严格的潜变量方法。
我们的第一个目标是测试执行功能,威胁敏感性,
和奖励敏感性作为转诊断和特定内化症状特征的风险机制,
轨迹我们假设EF差是一个跨诊断的危险因素,具有特定的症状特征
取决于威胁(导致焦虑唤醒)和奖励(导致快感缺乏或躁狂)
敏感性,以及不同的适应不良行为(例如,社会退缩与危险行为)。我们的第二个目标是
执行自动风险分析,使用机器学习来确定最简约的单位集,
预测结果-内化精神病理学筛查的未来临床转化的关键目标
风险这种方法的优势包括模型驱动的认知控制维度结构,消极的和消极的,
积极效价,跨越分析单元(生理学、行为、自我报告),处于关键发育风险
期强大的样本量使严格的统计建模方法和调节测试成为可能。
影响(例如,性别)。通过阐明神经认知风险和特定生物行为之间的相互作用,
我们可以产生一种新的影响,这对开发翻译工具至关重要,
预测个人特定的症状轨迹,为未来的诊断系统提供信息(RDoC优先级),
个性化有希望的干预措施(干预的目标风险机制,以及为谁)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROSELINDE H KAISER其他文献
ROSELINDE H KAISER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROSELINDE H KAISER', 18)}}的其他基金
Leveraging Latent Factors and Machine Learning to Forecast Internalizing Psychopathology in Emerging Adulthood
利用潜在因素和机器学习来预测成年初期的内化精神病理学
- 批准号:
10642691 - 财政年份:2022
- 资助金额:
$ 76.73万 - 项目类别:
Biotyping Mood Health in Late Adolescence: Neurocognitive Dimensions and Stress Pathways
青春期后期情绪健康的生物分型:神经认知维度和压力途径
- 批准号:
10400893 - 财政年份:2020
- 资助金额:
$ 76.73万 - 项目类别:
Biotyping Mood Health in Late Adolescence: Neurocognitive Dimensions and Stress Pathways
青春期后期情绪健康的生物分型:神经认知维度和压力途径
- 批准号:
10613468 - 财政年份:2020
- 资助金额:
$ 76.73万 - 项目类别:
Biotyping Mood Health in Late Adolescence: Neurocognitive Dimensions and Stress Pathways
青春期后期情绪健康的生物分型:神经认知维度和压力途径
- 批准号:
10210208 - 财政年份:2020
- 资助金额:
$ 76.73万 - 项目类别:
Biotyping Mood Health in Late Adolescence: Neurocognitive Dimensions and Stress Pathways
青春期后期情绪健康的生物分型:神经认知维度和压力途径
- 批准号:
9744021 - 财政年份:2018
- 资助金额:
$ 76.73万 - 项目类别:
Temporal Dynamics of Neural Network Dysfunction in Depression
抑郁症神经网络功能障碍的时间动态
- 批准号:
8909372 - 财政年份:2015
- 资助金额:
$ 76.73万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PROTEMO: Emotional Dynamics Of Protective Policies In An Age Of Insecurity
PROTEMO:不安全时代保护政策的情绪动态
- 批准号:
10108433 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
EU-Funded
The role of dietary and blood proteins in the prevention and development of major age-related diseases
膳食和血液蛋白在预防和发展主要与年龄相关的疾病中的作用
- 批准号:
MR/X032809/1 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Fellowship
Atomic Anxiety in the New Nuclear Age: How Can Arms Control and Disarmament Reduce the Risk of Nuclear War?
新核时代的原子焦虑:军控与裁军如何降低核战争风险?
- 批准号:
MR/X034690/1 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Fellowship
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341426 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Continuing Grant
Collaborative Research: Resolving the LGM ventilation age conundrum: New radiocarbon records from high sedimentation rate sites in the deep western Pacific
合作研究:解决LGM通风年龄难题:西太平洋深部高沉降率地点的新放射性碳记录
- 批准号:
2341424 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Effects of age of acquisition in emerging sign languages
博士论文研究:新兴手语习得年龄的影响
- 批准号:
2335955 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Standard Grant
The economics of (mis)information in the age of social media
社交媒体时代(错误)信息的经济学
- 批准号:
DP240103257 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Discovery Projects
How age & sex impact the transcriptional control of mammalian muscle growth
你多大
- 批准号:
DP240100408 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Discovery Projects
Supporting teachers and teaching in the age of Artificial Intelligence
支持人工智能时代的教师和教学
- 批准号:
DP240100111 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Discovery Projects
Enhancing Wahkohtowin (Kinship beyond the immediate family) Community-based models of care to reach and support Indigenous and racialized women of reproductive age and pregnant women in Canada for the prevention of congenital syphilis
加强 Wahkohtowin(直系亲属以外的亲属关系)以社区为基础的护理模式,以接触和支持加拿大的土著和种族育龄妇女以及孕妇,预防先天梅毒
- 批准号:
502786 - 财政年份:2024
- 资助金额:
$ 76.73万 - 项目类别:
Directed Grant