Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
基本信息
- 批准号:10367349
- 负责人:
- 金额:$ 64.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAlgorithmsArtificial IntelligenceCOVID-19COVID-19 patientCOVID-19 riskCaliforniaCessation of lifeChronicChronic DiseaseClinicalCommunicationConsentCountryCountyDataData AnalysesData DiscoveryData LinkagesDecentralizationDevelopmentDiseaseDisease OutbreaksEquilibriumEvaluationEventFutureGenomeGeographyGoalsHealthHealth Insurance Portability and Accountability ActHealth SciencesHealthcareHeterogeneityHospitalizationImageIncidenceInstitutionInterventionKnowledgeLaboratoriesLearningLinear ModelsLinkLiteratureMedical centerMethodologyMethodsModalityModelingMorbidity - disease rateOutcomeParentsPatient-Focused OutcomesPatientsPatternPerformancePersonsPhasePhenotypePopulationPredictive AnalyticsPrivacyPrivatizationPublishingReactionRecordsRecoveryRegistriesResearchResearch PersonnelResolutionResource AllocationResourcesRunningSample SizeSecuritySiteSourceStructureSupervisionTechniquesTestingTexasTimeTrainingUnderrepresented MinorityUniversitiesVisitanalytical toolartificial intelligence algorithmbaseclinical decision supportclinical decision-makingcombatcombinatorialcostdata disseminationdata integrationdata privacydata sharingdesigndistributed datafederated computingfederated learninghospital readmissionindividual patientlarge datasetsmortalitymultimodalitynovelnovel strategiesoutcome predictionpandemic diseasepatient privacypredictive modelingprivacy preservationprivacy protectionprofiles in patientsrepositorysoftware developmentstatistical learningsupervised learningunsupervised learningvirtual
项目摘要
Project Summary
Large data sets are important in the development and evaluation of artificial intelligence (AI) and
statistical learning models to predict morbidity, mortality, and other important health outcomes.
Healthcare institutions are stewards of their patients’ data, and want to contribute to the
development, evaluation, and utilization of predictive analytics tools. However, they also know
that simple “de-identification” per HIPAA rules is not sufficient to protect patient privacy.
Additionally, other factors such as protection of market share, lack of control about who uses
shared data for what purposes, and concerns about patients’ reactions to having their data shared
without explicit consent make initiatives such as certain registries and centralized repositories
difficult to implement. We have shown that it is possible to decompose algorithms so that they
can run on data that stays at each healthcare center, thus mitigating the concerns about control
and potential misuse. In the first phase of this project, we concentrated on demonstrating the
accuracy and performance of these algorithms for the study of chronic diseases in which (1)
acquisition of new knowledge about the condition is slow (i.e., the disease is well understood, so
scientific discoveries are not being published at a rapid pace); and (2) the incidence and
presentation of the disease do not vary dramatically from place to place, and from person to
person. In this competitive renewal, we propose to develop decentralized predictive models that
meet all requirements for chronic diseases, but the methods are also applicable to rapidly evolving
acute conditions such as COVID-19. We propose new approaches to deal with sites that may be
missing certain patient profiles or certain variables but can still participate in model learning,
evaluation and implementation. These new AI algorithms will permit supervised and unsupervised
learning across institutions, using data from multiple modalities (e.g., imaging, genomes,
laboratory tests), and will allow privacy-protecting record linkage. We will test these algorithms
and approaches in data from three highly diverse medical centers across the US: Emory
University in Atlanta, University of Texas Health Science Center at Houston, and University of
California, San Diego.
项目摘要
大数据集在开发和评估人工智能(AI)和
用于预测发病率、死亡率和其他重要健康结果的统计学习模型。
医疗机构是患者数据的管理者,并希望为
预测分析工具的开发、评估和利用。然而,他们也知道
根据HIPAA的规则,这种简单的“取消身份识别”不足以保护患者的隐私。
此外,保护市场份额、缺乏对谁使用的控制等其他因素
共享数据的目的,以及对患者对共享数据的反应的担忧
在没有明确同意的情况下,发起某些注册中心和集中存储库等活动
难以实施。我们已经证明了分解算法是可能的,以便它们
可以使用驻留在每个医疗保健中心的数据运行,从而减轻了对控制的担忧
以及潜在的误用。在这个项目的第一阶段,我们集中展示了
这些算法在慢性病研究中的准确性和性能(1)
获得关于这种情况的新知识是缓慢的(即,对这种疾病已经很好地了解了,所以
科学发现没有迅速公布);和(2)发病率和
这种疾病的表现在不同的地方和不同的人之间没有明显的差异。
人。在这次竞争更新中,我们建议开发分散的预测模型,以
满足慢性病的所有要求,但这些方法也适用于快速发展的
新冠肺炎等急性情况。我们提出了新的方法来处理可能被
缺少某些患者简档或某些变量,但仍可参与模型学习,
评估和实施。这些新的人工智能算法将允许监督和非监督
跨机构学习,使用来自多种模式的数据(例如,成像、基因组、
实验室测试),并将允许隐私保护记录链接。我们将测试这些算法
来自美国三个高度多样化的医疗中心的数据和方法:埃默里
亚特兰大大学、休斯顿德克萨斯大学健康科学中心和德克萨斯大学
加利福尼亚州,圣地亚哥。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Jiang其他文献
Xiaoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
- 批准号:
10642562 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
- 批准号:
10714797 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10740597 - 财政年份:2023
- 资助金额:
$ 64.71万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10615684 - 财政年份:2020
- 资助金额:
$ 64.71万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10598207 - 财政年份:2020
- 资助金额:
$ 64.71万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10133501 - 财政年份:2020
- 资助金额:
$ 64.71万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10377455 - 财政年份:2020
- 资助金额:
$ 64.71万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
9239100 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
Open Health Natural Language Processing Collaboratory
开放健康自然语言处理合作实验室
- 批准号:
9385056 - 财政年份:2017
- 资助金额:
$ 64.71万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 64.71万 - 项目类别:
Research Grant