Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
基本信息
- 批准号:10714797
- 负责人:
- 金额:$ 67.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-05-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAgreementAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAlzheimer&aposs disease patientAntihypertensive AgentsAtrophicCharacteristicsChronicClinical DataClinical TrialsCognitiveDataData SetDisease ProgressionEnsureFailureFriendsFutureGalantamineGenderGoldGrainHippocampusImpaired cognitionIndividualKnowledgeLearningModalityModelingNerve DegenerationObesityOutcomeOutsourcingPatientsPharmaceutical PreparationsPharmacologic SubstancePhase II Clinical TrialsPhenotypePlasmaPoliciesPopulationPrediction of Response to TherapyReportingResearchRiskSample SizeSubgroupSubjects SelectionsTrainingcomorbiditydata accessdeep learningdistributed datadrug developmentfederated learningforestindividual responseinformatics toolinnovationmachine learning modelmachine learning predictionoutcome predictionpatient populationpatient responsepatient subsetsphase III trialpredictive modelingprivacy preservationprospectiverandomized, clinical trialsresponsesexsuccesstherapy developmenttransmission processtreatment effecttreatment response
项目摘要
Drug development for treating Alzheimer's disease (AD) has been challenging and expensive.
Drug failures are very likely due, in large part, to the differential responses of patients to
different treatments. Some subsets of patients have treatment moderators and respond
differently. Identifying such responsive subsets has been challenging due to limited sample size
in one clinical trial or may be beyond the scope of the ad-hoc analyses in individual clinical
trials, considering the complexity of AD. Another important subset of patients are rapid
progressors, who have faster rates of cognitive decline in a defined period and may respond
differently to treatments than other AD patients. Predicting the rapid progressors and their
differential responses is very challenging. Machine learning prediction has been no better than
random guesses due to volatility of cognitive scores and insufficiency of comprehensive and
fine-grained longitudinal clinical data. Pooling patient-level data from multiple clinical trials data
may address the above challenges by increasing sample size and obtaining a better
coverage/representation of the patient population. However, many clinical trials data are stored
in distributed data access servers, and data use agreements often prohibit exporting the patient-
level data out of the local servers. We aim to address the challenges via advanced informatics
tools using AI/ML models. We will develop privacy-preserving federated models to harmonize
local counterfactual effect estimation models into a global model without exchanging patient-
level data. Aim 1 focuses on developing a federated subgrouping model based on differential
responses. Aim 2 focuses on developing a federated counterfactual regression model using
deep learning to predict rapid progressors and their differential responses. Aim 3 focuses on
verifying and refining the subgroups prediction using real-world observation in nation-wide
consortium data. If successful, this project will contribute to identifying patient subgroups that
respond differently, which will result in smaller, less expensive, and more targeted AD clinical
trials that expose fewer patients to experimental medications to which they are unlikely to
respond.
用于治疗阿尔茨海默病(AD)的药物开发一直具有挑战性且昂贵。
药物失败很可能在很大程度上归因于患者对药物的不同反应
不同的治疗。一些患者亚群有治疗调节剂,
不同.由于样本量有限,识别此类响应子集一直具有挑战性
在一项临床试验中,或可能超出个体临床试验中的特别分析范围
试验,考虑到AD的复杂性。另一个重要的患者亚群是快速
进展者,在规定的时间内认知能力下降的速度更快,
与其他AD患者的治疗不同。预测快速进展者及其
差异化反应是非常具有挑战性的。机器学习预测并不比
由于认知分数的波动性和综合性不足,
细粒度的纵向临床数据。合并来自多项临床试验数据的患者水平数据
可以通过增加样本量和获得更好的
患者人群的覆盖率/代表性。然而,许多临床试验数据被存储在
在分布式数据访问服务器中,数据使用协议通常禁止导出患者-
从本地服务器中删除数据。我们的目标是通过先进的信息学来应对挑战
使用AI/ML模型的工具我们将开发保护隐私的联邦模型,
将局部反事实效应估计模型转换为全局模型,而无需交换患者-
水平数据。Aim 1的重点是开发一个基于差分
应答Aim 2的重点是开发一个联邦反事实回归模型,
深度学习来预测快速进展者及其差异反应。目标3侧重于
在全国范围内使用真实世界观测来验证和改进子组预测
财团数据。如果成功,该项目将有助于确定患者亚组,
不同的反应,这将导致更小,更便宜,更有针对性的AD临床
试验使较少的患者接触到他们不太可能接受的实验性药物,
回答。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Jiang其他文献
Xiaoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
- 批准号:
10642562 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10740597 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10367349 - 财政年份:2022
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10615684 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10598207 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10133501 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10377455 - 财政年份:2020
- 资助金额:
$ 67.93万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
9239100 - 财政年份:2017
- 资助金额:
$ 67.93万 - 项目类别:
Open Health Natural Language Processing Collaboratory
开放健康自然语言处理合作实验室
- 批准号:
9385056 - 财政年份:2017
- 资助金额:
$ 67.93万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 67.93万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 67.93万 - 项目类别:
Studentship














{{item.name}}会员




