Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
基本信息
- 批准号:10740597
- 负责人:
- 金额:$ 61.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AccelerationAcuteAddressAlgorithmsArtificial IntelligenceCOVID-19COVID-19 patientCOVID-19 riskCalibrationCaliforniaCessation of lifeChronicChronic DiseaseClinicalCommunicationConsentCountryCountyDataData AnalysesData DiscoveryData LinkagesDecentralizationDevelopmentDiseaseEquilibriumEvaluationEventGenomeGeographyGoalsHealthHealth Insurance Portability and Accountability ActHealth SciencesHealth protectionHealthcareHeterogeneityHospitalizationImageIncidenceInstitutionInterventionKnowledgeLaboratoriesLearningLinear ModelsLinkLiteratureMarketingMedical centerMethodologyMethodsModalityModelingMorbidity - disease rateOutcomeParentsPatient-Focused OutcomesPatientsPatternPerformancePersonsPhasePhenotypePopulationPredictive AnalyticsPrivacyPrivatizationPublishingReactionRecordsRecoveryRegistriesResearchResearch PersonnelResolutionResource AllocationResourcesRunningSample SizeSecuritySiteSourceStructureTechniquesTestingTexasTimeTrainingUnderrepresented MinorityUniversitiesVisitanalytical toolartificial intelligence algorithmclinical decision supportclinical decision-makingcombatcombinatorialcostdata disseminationdata integrationdata privacydata sharingdesigndistributed datafederated datafederated learningfuture outbreakhospital readmissionindividual patientlarge datasetsmodel buildingmortalitymultimodalitynew pandemicnovelnovel strategiesoutcome predictionpandemic diseasepatient privacypredictive modelingprivacy preservationprivacy protectionprofiles in patientsrepositorysoftware developmentstatistical learningsupervised learningtransmission processunsupervised learningvirtual
项目摘要
Project Summary
Large data sets are important in the development and evaluation of artificial intelligence (AI) and
statistical learning models to predict morbidity, mortality, and other important health outcomes.
Healthcare institutions are stewards of their patients’ data, and want to contribute to the
development, evaluation, and utilization of predictive analytics tools. However, they also know
that simple “de-identification” per HIPAA rules is not sufficient to protect patient privacy.
Additionally, other factors such as protection of market share, lack of control about who uses
shared data for what purposes, and concerns about patients’ reactions to having their data shared
without explicit consent make initiatives such as certain registries and centralized repositories
difficult to implement. We have shown that it is possible to decompose algorithms so that they
can run on data that stays at each healthcare center, thus mitigating the concerns about control
and potential misuse. In the first phase of this project, we concentrated on demonstrating the
accuracy and performance of these algorithms for the study of chronic diseases in which (1)
acquisition of new knowledge about the condition is slow (i.e., the disease is well understood, so
scientific discoveries are not being published at a rapid pace); and (2) the incidence and
presentation of the disease do not vary dramatically from place to place, and from person to
person. In this competitive renewal, we propose to develop decentralized predictive models that
meet all requirements for chronic diseases, but the methods are also applicable to rapidly evolving
acute conditions such as COVID-19. We propose new approaches to deal with sites that may be
missing certain patient profiles or certain variables but can still participate in model learning,
evaluation and implementation. These new AI algorithms will permit supervised and unsupervised
learning across institutions, using data from multiple modalities (e.g., imaging, genomes,
laboratory tests), and will allow privacy-protecting record linkage. We will test these algorithms
and approaches in data from three highly diverse medical centers across the US: Emory
University in Atlanta, University of Texas Health Science Center at Houston, and University of
California, San Diego.
项目摘要
大型数据集在人工智能(AI)的开发和评估中非常重要,
统计学习模型,以预测发病率,死亡率和其他重要的健康结果。
医疗机构是患者数据的管理者,并希望为
开发、评估和利用预测分析工具。然而,他们也知道,
根据HIPAA规则,简单的“去识别”不足以保护患者隐私。
此外,其他因素,如保护市场份额,缺乏控制谁使用,
出于什么目的共享数据,以及对患者对其数据共享的反应的担忧
在没有明确同意的情况下,
难以实施。我们已经证明,有可能分解算法,使它们
可以在每个医疗中心的数据上运行,从而减轻了对控制的担忧
潜在的滥用。在这个项目的第一阶段,我们集中展示了
这些算法用于慢性疾病研究的准确性和性能,其中(1)
获得关于病症的新知识是缓慢的(即,人们对这种疾病已经很了解了,所以
科学发现没有以快速的速度发表);(2)发病率和
疾病的表现并没有显着不同的地方,从人到人,
人.在这种竞争性更新中,我们建议开发分散的预测模型,
满足慢性病的所有要求,但这些方法也适用于快速发展的
如COVID-19等急性疾病。我们提出了新的方法来处理网站,
缺少某些患者概况或某些变量但仍然可以参与模型学习,
评价和执行。这些新的人工智能算法将允许监督和无监督
跨机构学习,使用来自多种模式的数据(例如,成像,基因组,
实验室测试),并将允许隐私保护记录链接。我们将测试这些算法
和方法的数据来自美国三个高度多样化的医疗中心:埃默里
亚特兰大大学、德克萨斯大学休斯顿健康科学中心和
加州,圣地亚哥。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaoqian Jiang其他文献
Xiaoqian Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaoqian Jiang', 18)}}的其他基金
Harmonizing multiple clinical trials for Alzheimer's disease to investigate differential responses to treatment via federated counterfactual learning
协调阿尔茨海默病的多项临床试验,通过联合反事实学习研究对治疗的差异反应
- 批准号:
10714797 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
Robust privacy preserving distributed analysis platform for cancer research: addressing data bias and disparities
用于癌症研究的强大隐私保护分布式分析平台:解决数据偏差和差异
- 批准号:
10642562 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
iDASH Genome Privacy and Security Competition Workshop
iDASH 基因组隐私和安全竞赛研讨会
- 批准号:
10614292 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
10367349 - 财政年份:2022
- 资助金额:
$ 61.37万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10615684 - 财政年份:2020
- 资助金额:
$ 61.37万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10598207 - 财政年份:2020
- 资助金额:
$ 61.37万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10133501 - 财政年份:2020
- 资助金额:
$ 61.37万 - 项目类别:
Finding combinatorial drug repositioning therapy for Alzheimer's disease and related dementias
寻找治疗阿尔茨海默病和相关痴呆症的组合药物重新定位疗法
- 批准号:
10377455 - 财政年份:2020
- 资助金额:
$ 61.37万 - 项目类别:
Decentralized differentially-private methods for dynamic data release and analysis
用于动态数据发布和分析的去中心化差分隐私方法
- 批准号:
9239100 - 财政年份:2017
- 资助金额:
$ 61.37万 - 项目类别:
Open Health Natural Language Processing Collaboratory
开放健康自然语言处理合作实验室
- 批准号:
9385056 - 财政年份:2017
- 资助金额:
$ 61.37万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 61.37万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 61.37万 - 项目类别:
Operating Grants