DEVELOPMENT OF A NOVEL CLASS OF ANTIBIOTICS AGAINST VIBRIO CHOLERAE NA+-NQR
新型抗霍乱弧菌 NA -NQR 抗生素的开发
基本信息
- 批准号:10367435
- 负责人:
- 金额:$ 55.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-12-13 至 2025-11-30
- 项目状态:未结题
- 来源:
- 关键词:Animal ModelAntibioticsAntimalarialsAntipsychotic AgentsAutomobile DrivingBacterial InfectionsBindingBinding SitesBiochemistryCell physiologyCellsCellular biologyCholeraCommunicable DiseasesComplexComputer AnalysisCoupledCrystallizationDataDevelopmentDiarrheaDockingDoseDrug DesignDrug EffluxDrug TargetingEnzyme Inhibitor DrugsEnzymesEquilibriumEvolutionFamilyFoundationsFree EnergyGastrointestinal DiseasesGenerationsGrowthHumanHuman GenomeImmune systemInfectionIntestinesIonsLeadLibrariesLifeMalariaMammalian CellMembraneMetabolismMethodsMicrobeMicrobiologyMitochondriaModelingMulti-Drug ResistanceMultienzyme ComplexesMultiple Bacterial Drug ResistanceNADH dehydrogenase (ubiquinone)Na(+)-K(+)-Exchanging ATPaseNutrientOxidation-ReductionPathogenicityPatternPerformancePersonsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhenothiazinesPhenotypePhysiologyPlayPredispositionProcessProductionPropertyProteinsPsychosesReactive Oxygen SpeciesRegulationRoleRotationSiteSodiumSolidSpecificityStructureTestingToxic effectToxinUbiquinoneVibrio choleraeanalogbacterial metabolismbasecell motilitydesigndrug developmentfunctional groupgastrointestinal infectionhuman diseaseimprovedin vivoinhibitoriterative designlead optimizationmicrobialmicroorganismmutantnovelnovel antibiotic classnovel therapeuticspandemic diseasepathogenpathogenic bacteriapharmacophoreprocess optimizationresistance mechanismresistant strainrespiratoryrespiratory enzymescaffoldstructural biologyuptake
项目摘要
PROJECT SUMMARY
The sodium-dependent NADH: ubiquinone oxidoreductase (Na+-NQR) is the main ion transporter in
hundreds of pathogenic bacteria, including Vibrio cholerae, the causal agent of cholera, a devastating
gastrointestinal disease with a worldwide distribution that has developed multidrug-resistant phenotypes. Na+-
NQR fulfills two essential roles in V. cholerae cell physiology, as a respiratory enzyme, providing energy to the
cell, and as the main sodium pump, energizing the membrane and driving nutrient uptake, pH regulation,
elimination of drugs, cell motility, secretion of toxins and other homeostatic processes. Na+-NQR is an optimal
drug target due to its critical role in bacterial metabolism and because it is absent in mammalian cells. Moreover,
Na+-NQR has unique structural motifs, not found in any human protein, which allow the discovery of drugs that
can act specifically on this enzyme. In addition, Na+-NQR inhibitors could increase the susceptibility of V.
cholerae to other drugs by de-energizing the membrane, and may be used in a combination dosing approach to
rescue obsolete antibiotics. Our group has now identified two novel compound leads, ubiquinone analogs
(UQAs) and phenothiazines, as inhibitors of this enzyme that are suitable for drug development. The three UQAs
analogs characterized have antimalarial properties and show specific and potent inhibitory effects on Na+-NQR,
with strong antibiotic activity against V. cholerae. These compounds not only abolish V. cholerae Na+-NQR
enzymatic activity, but also trigger the overproduction of reactive oxygen species, which is lethal to microbes.
The structures of these inhibitors and docking methods were used to identify the pharmacophore and the binding
modes of the molecules in the UQ binding site, which allow us to pursue lead development to obtain inhibitors
of high potency and specificity. In addition, we have identified three phenothiazine-like compounds with anti-
psychotic properties that show potent inhibitory activity against Na+-NQR and that could be optimized into
antibiotics. The main aim of this project is the development of a novel class of antibiotics to specifically target
the Na+-NQR complex. The inhibitors that we have identified will be fully characterized, to understand their
mechanism of action, binding sites, potency and antibiotic properties. Moreover, toxicity towards human cells
and mitochondria, as well as their pharmacologic properties, will be assessed to evaluate the potential of these
compounds to treat human infections. The data obtained from toxicity studies, enzymatic and microbiological
characterizations will be used to guide the design and synthesis of analogs with high potency and low toxicity.
Lead optimization will be carried out by our medicinal chemistry team guided by pharmacophore analysis,
docking and binding free energy calculations. The structures of the newly-identified inhibitors will be used to build
compound libraries carrying the active core with different substitution patterns, which will be iteratively screened
and characterized. The data generated in this proposal is critical to the discovery of urgently-needed antibiotics
with a new mechanism of action effective against V. cholerae and many other Na+-NQR bearing pathogens.
项目摘要
钠依赖的NADH:泛醌氧化还原酶(Na+-NQR)是细胞内主要的离子转运蛋白。
数百种致病菌,包括霍乱弧菌,霍乱的致病菌,
全球分布的胃肠道疾病,已形成多药耐药表型。Na+-
NQR在霍乱弧菌细胞生理学中发挥两个重要作用,作为呼吸酶,为细胞提供能量,
细胞,并作为主要的钠泵,激励膜和驱动营养吸收,pH调节,
消除药物、细胞运动、毒素分泌和其他稳态过程。Na+-NQR是一种最佳的
由于其在细菌代谢中的关键作用,并且因为其在哺乳动物细胞中不存在,因此它是药物靶点。此外,委员会认为,
Na+-NQR具有独特的结构基序,在任何人类蛋白质中都没有发现,这使得可以发现药物,
可以特异性地作用于这种酶。此外,Na+-NQR抑制剂可增加V的敏感性。
通过使膜断电来将胆固醇释放到其他药物,并且可以以组合给药方法使用,
拯救过时的抗生素我们的小组现在已经确定了两个新的化合物线索,泛醌类似物
(UQA)和吩噻嗪,作为该酶的抑制剂,其适用于药物开发。三个UQA
所表征的类似物具有抗疟疾性质并对Na+-NQR显示出特异性和有效的抑制作用,
对霍乱弧菌有较强的抗菌活性。这些化合物不仅消除霍乱弧菌Na+-NQR
酶活性,但也引发活性氧的过度生产,这是致命的微生物。
利用分子结构和分子对接方法对这些抑制剂进行了药效团和结合活性的鉴定
UQ结合位点中的分子模式,这使我们能够进行先导开发以获得抑制剂
高效力和特异性。此外,我们还鉴定了三个吩噻嗪类化合物,
精神病性质,显示出对Na+-NQR的有效抑制活性,并且可以优化为
抗生素该项目的主要目的是开发一种新型抗生素,
Na+-NQR复合物。我们已经确定的抑制剂将被充分表征,以了解它们的
作用机制、结合位点、效力和抗生素性质。此外,对人体细胞的毒性
和线粒体,以及它们的药理学特性,将被评估,以评估这些的潜力。
用于治疗人类感染的化合物。从毒性研究、酶和微生物研究中获得的数据
表征将用于指导具有高效力和低毒性的类似物的设计和合成。
我们的药物化学团队将在药效团分析的指导下进行先导物优化,
对接和结合自由能计算。新发现的抑制剂的结构将用于构建
携带具有不同取代模式的活性核心的化合物文库,其将被迭代筛选
和表征了该提案中产生的数据对于发现急需的抗生素至关重要
具有有效对抗霍乱弧菌和许多其它携带Na+-NQR的病原体的新作用机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Oscar Juarez其他文献
Oscar Juarez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Oscar Juarez', 18)}}的其他基金
DEVELOPMENT OF A NOVEL CLASS OF ANTIBIOTICS AGAINST VIBRIO CHOLERAE NA+-NQR
新型抗霍乱弧菌 NA -NQR 抗生素的开发
- 批准号:
10540361 - 财政年份:2021
- 资助金额:
$ 55.41万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Studentship
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Research Grant
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 55.41万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 55.41万 - 项目类别:
Studentship