Correcting the Cellular Ecology of Diabetic Complications
纠正糖尿病并发症的细胞生态
基本信息
- 批准号:10367822
- 负责人:
- 金额:$ 38.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-09-30 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAdultAffectAnimal ModelBehaviorBiological AssayCell LineCell TherapyCellsChronicClinicalComplications of Diabetes MellitusDataDebridementDefectDiabetes MellitusDiabetic Foot UlcerDiabetic mouseDisease ProgressionEcologyEvaluationFunctional disorderFundingGene ExpressionGene Expression ProfileHomingHumanHyperglycemiaHypertensionHypoglycemic AgentsImpairmentIn VitroIndividualInsulinIschemiaLaboratoriesLocationLower ExtremityMedicalMethodologyMethodsMolecularMusMuscleOligonucleotidesOralOrganPathogenesisPathway interactionsPatientsPhysiologicalPopulationPopulation DynamicsProcessProductionProteomicsResolutionRoleSamplingSorting - Cell MovementStrokeTechniquesTechnologyTherapeutic UsesTimeTissuesUnited StatesUnited States National Institutes of HealthVascular SystemVisitWorkbasecell behaviorcytokinediabeticdiabetic patientdiabetic ulcerdiabetic wound healingdisorder controlhealingheart disease riskimprovedinsightinterestintravenous administrationlimb amputationmouse modelmultimodalityneovascularizationnext generationnon-diabeticnon-healing woundsnovelnovel strategiesnovel therapeutic interventionpreventprotein expressionreparative processresponserestorationsingle cell sequencingsingle-cell RNA sequencingstem cellstissue repairtranscriptometranscriptomicswastingwoundwound environmentwound healing
项目摘要
PROJECT SUMMARY / ABSTRACT
Diabetes affects nearly 10% of the adult population (30 million), and these numbers are expected to double by
the year 2050. The pathophysiology of diabetes profoundly impairs all tissue reparative processes, leading to
chronic non-healing wounds in affected patients. Diabetic foot ulcers affect between 15-30% of all diabetic
individuals and represent the leading cause of lower limb amputations in the United States. Conventional
methods to treat diabetes, such as with insulin or oral hypoglycemic agents, can control the disease but do not
prevent diabetic complications, as demonstrated by continued progressive organ dysfunction even decades after
medical optimization. This highlights a clear need for new therapeutic approaches. Over the past 15 years of
NIH funding, our laboratory has made important contributions to our understanding of the critical molecular and
cellular pathways in normal and diabetic tissue repair. We have identified hyperglycemia-related impairments in
both the local microenvironment and progenitor cell homing and cytokine production that contribute to the
pathogenesis of diabetic complications. We have demonstrated that diabetes results in depletion of critical cell
subpopulations, resulting in decreased neovascularization and impaired tissue healing. To understand the
effects of diabetes on cell population dynamics with greater precision, we have developed novel single cell
“-omics” techniques to identify critical perturbations in cell subpopulations at the single cell level. It is our
fundamental hypothesis that diabetes alters the “cellular ecology” of heterogeneous cell populations involved
in tissue repair and that normalization of those cell subpopulations can treat or reverse diabetic complications.
In this proposal, we will integrate emerging multimodal -omics technologies to definitively characterize the
behavior of cell subpopulations in diabetic complications, including wound healing. We will extend this work
therapeutically by using cell-based approaches to normalize these defects to treat and prevent diabetic
complications. To begin, we will employ a novel multiplex approach for high-throughput single cell sequencing
to definitively characterize the behavior of resident tissue and progenitor cell subpopulations in human diabetic
and non-diabetic wounds (Specific Aim 1). We will then confirm these human observations in animal models and
define these changes with spatial resolution by integrating single cell sequencing with next-generation spatial
transcriptomic and proteomic technologies and precisely delineate where in the three-dimensional wound
environment these differences exist (Specific Aim 2). Finally, we will use this information to optimize the systemic
delivery of cell-based therapeutics in order to prevent or reverse diabetes-induced defects in relevant cell
populations and thereby correct diabetic complications (Specific Aim 3). Taken together, this novel approach for
identifying, spatially characterizing, and correcting subpopulation deficits in diabetic complications will provide
new insights into diabetic pathophysiology and inform novel strategies to prevent and treat these complications.
项目摘要/摘要
糖尿病影响了近10%的成年人口(3000万),预计到2019年,这一数字将翻一番
2050年。糖尿病的病理生理学严重损害了所有组织修复过程,导致
受影响患者的慢性不可愈合伤口。糖尿病足溃疡影响15%-30%的糖尿病人
在美国,这是导致截肢的主要原因。传统型
治疗糖尿病的方法,如胰岛素或口服降糖药,可以控制疾病,但不能。
预防糖尿病并发症,即使在几十年后仍有持续进行性器官功能障碍
医疗优化。这凸显了对新的治疗方法的明显需求。在过去的15年里
在美国国立卫生研究院的资助下,我们的实验室为我们理解关键分子和
正常和糖尿病组织修复中的细胞通路。我们已经确定了与高血糖相关的损害
局部微环境和祖细胞归巢和细胞因子的产生
糖尿病并发症的发病机制。我们已经证明,糖尿病会导致关键细胞耗尽。
亚群,导致新生血管减少和组织愈合受损。要了解
糖尿病对细胞种群动力学的影响更精确,我们开发了新的单细胞
-组学技术,在单细胞水平上识别细胞亚群中的关键扰动。这是我们的
糖尿病改变异质细胞群“细胞生态”的基本假设
组织修复和这些细胞亚群正常化可以治疗或逆转糖尿病并发症。
在这个提案中,我们将整合新兴的多模式组学技术,以明确地描述
细胞亚群在糖尿病并发症中的行为,包括伤口愈合。我们将继续开展这项工作。
通过使用基于细胞的方法正常化这些缺陷来治疗和预防糖尿病
并发症。首先,我们将使用一种新的多路方法进行高通量的单细胞测序
明确描述人类糖尿病患者驻留组织和祖细胞亚群的行为
和非糖尿病创面(具体目标1)。然后我们将在动物模型中证实这些人类观察到的结果
通过将单元格测序与下一代空间技术相结合,以空间分辨率定义这些变化
转录组和蛋白质组学技术并精确地描绘出三维伤口的位置
环境存在这些差异(具体目标2)。最后,我们将利用这些信息来优化系统
提供以细胞为基础的治疗药物,以防止或逆转糖尿病引起的相关细胞缺陷
减少糖尿病患者的风险,从而纠正糖尿病并发症(具体目标3)。综上所述,这一新颖的方法
识别、空间表征和纠正糖尿病并发症中的亚群缺陷将提供
对糖尿病病理生理学的新见解,并为预防和治疗这些并发症提供新的策略。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GEOFFREY C GURTNER其他文献
GEOFFREY C GURTNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GEOFFREY C GURTNER', 18)}}的其他基金
TARGETING HIF-1α DYSFUNCTION TO TREAT PRESSURE ULCERS IN THE AGED
针对 HIF-1α 功能障碍治疗老年人压疮
- 批准号:
10444745 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
TARGETING HIF-1α DYSFUNCTION TO TREAT PRESSURE ULCERS IN THE AGED
针对 HIF-1α 功能障碍治疗老年人压疮
- 批准号:
10685482 - 财政年份:2022
- 资助金额:
$ 38.38万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10947670 - 财政年份:2020
- 资助金额:
$ 38.38万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10417228 - 财政年份:2020
- 资助金额:
$ 38.38万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10256045 - 财政年份:2020
- 资助金额:
$ 38.38万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10044343 - 财政年份:2020
- 资助金额:
$ 38.38万 - 项目类别:
Diabetic Foot Ulcer Biofilm Infection and Recurrence
糖尿病足溃疡生物膜感染和复发
- 批准号:
10376509 - 财政年份:2020
- 资助金额:
$ 38.38万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10203948 - 财政年份:2018
- 资助金额:
$ 38.38万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10377776 - 财政年份:2018
- 资助金额:
$ 38.38万 - 项目类别:
Stanford Advanced Wound Care Center Clinical Research Unit
斯坦福高级伤口护理中心临床研究部
- 批准号:
10230438 - 财政年份:2018
- 资助金额:
$ 38.38万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.38万 - 项目类别:
Research Grant