Development of a high throughput system for molecular imaging of different cell types in mouse brain tissues
开发用于小鼠脑组织中不同细胞类型的分子成像的高通量系统
基本信息
- 批准号:10369883
- 负责人:
- 金额:$ 151.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAtlasesBiologicalBrainBrain imagingCellsCensusesChemicalsClassificationCouplingDataData AnalysesData SourcesData Storage and RetrievalDevelopmentDiseaseElectrospray IonizationGoalsGraphHealthHourHumanHuman BioMolecular Atlas ProgramImageImaging DeviceImaging technologyImmunofluorescence ImmunologicImmunofluorescence MicroscopyLabelLinkLipidsMapsMass Spectrum AnalysisMeasurementMethodsMicrofluidicsMiningMolecularMolecular ProfilingMusNeurogliaNeuronsPeptidesProteinsProteomicsResearchResolutionRoboticsSamplingScanningSensitivity and SpecificitySignal TransductionSpectrometry, Mass, Electrospray IonizationSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpeedStructureSystemTechniquesTissue imagingTissuesbasebrain cellbrain tissuecell typedata acquisitiondata formatdata integrationdata miningdata sharingdeep learningexperimental studyhigh resolution imaginghigh throughput technologyimage registrationimaging approachimaging modalityimaging platformimaging systemimprovedinnovationinterestion mobilityionizationionization techniquelarge scale datalearning strategylipidomicsmass spectrometermembermetabolomicsmolecular imagingnanonoveltool
项目摘要
Development of a high throughput system for molecular imaging of different cell types in mouse brain
tissues
Mass spectrometry imaging (MSI) is a powerful tool for developing detailed molecular maps of biological
tissues with high specificity and sensitivity. This label-free technique enables simultaneous imaging of
multiple classes of molecules including lipids, metabolites, and proteins thereby advancing the
understanding of tissue organization and function. In this project, we will advance brain cell census
research by developing an innovative platform for the acquisition of a comprehensive spatially-resolved
cell-specific atlas of lipids, metabolites, and proteins in mouse brain tissue. The platform will combine MSI
with immunofluorescence imaging to place the detailed molecular maps into the spatial cellular context
within the brain tissue, which will facilitate image registration to the common coordinate system.
Furthermore, we will develop deep learning and data mining approaches to enable automated assignment
of molecular signatures to different cell types and efficient data sharing and comparison with other
techniques. This research will address the existing bottlenecks in the experimental throughout and
molecular coverage of the current MSI technologies along with the limitations of data analysis tools.
Furthermore, our approach will compensate for signal suppression during ionization also called ‘matrix
effects’, which is particularly severe in imaging of brain tissue. Such matrix effects common to all the MSI
modalities including commercial MALDI MSI instruments interfere with the accurate measurement of the
spatial localization of molecules. To overcome these challenges, we will advance the capabilities of
nanospray desorption electrospray ionization (nano-DESI) - an ambient ionization technique, which
efficiently compensates for matrix effects and thereby enables accurate and sensitive imaging of chemical
gradients for hundreds of metabolites and lipids in biological tissue sections. Nano-DESI MSI does not require
sample pretreatment, has a sub-femtomole sensitivity, and high spatial resolution. The new nano-DESI MSI
system will provide a 5-fold increase in the experimental throughput and improve the spatial resolution of
protein imaging in whole tissue sections from ~80 µm to ~10 µm. Coupling nano-DESI MSI with a high-
resolution ion mobility mass spectrometer will substantially enhance molecular coverage. Meanwhile, co-
registration of MSI with immunofluorescence data will be used to generate comprehensive 3D molecular
maps of the mouse brain tissue. Collectively, these efforts will establish a robust imaging platform, which will
transform our ability to generate detailed molecular maps of different cell types in brain tissues.
小鼠脑内不同细胞类型高通量分子成像系统的研制
组织
摘要质谱成像(MSI)是绘制生物分子图谱的有力工具。
具有高度特异性和敏感性的组织。这种无标记技术能够同时成像
包括脂质、代谢物和蛋白质在内的多种分子,从而促进
了解组织的组织和功能。在这个项目中,我们将推进脑细胞普查
通过开发创新平台进行研究,获取空间分辨率全面的
小鼠脑组织中脂质、代谢物和蛋白质的细胞特异性图谱。该平台将结合MSI
通过免疫荧光成像将详细的分子图谱置于空间细胞环境中
在脑组织内,这将有助于图像配准到公共坐标系。
此外,我们将开发深度学习和数据挖掘方法,以实现自动作业
不同细胞类型的分子签名以及高效的数据共享和与其他
技巧。这项研究将解决整个实验过程中存在的瓶颈和
当前MSI技术的分子覆盖面以及数据分析工具的局限性。
此外,我们的方法将补偿电离过程中的信号抑制,也称为矩阵
影响‘,这在脑组织成像中尤其严重。这种矩阵效应对所有MSI都是通用的
包括商用MALDI MSI仪器在内的医疗设备会干扰准确测量
分子的空间局部化。为了克服这些挑战,我们将推进
纳米解吸电喷雾电离(Nano-DESI)-一种环境电离技术,它
有效地补偿基质效应,从而实现准确和灵敏的化学成像
生物组织切片中数百种代谢物和脂质的梯度。Nano-Desi MSI不需要
样品前处理,具有亚毫微克分子灵敏度,且空间分辨率高。新的纳米DISI MSI
系统将使实验吞吐量提高5倍,并提高空间分辨率
在从~80微米到~10微米的整个组织切片中进行蛋白质成像。
分辨率离子迁移率质谱仪将大大提高分子覆盖率。同时,联合-
MSI与免疫荧光数据的注册将用于生成全面的3D分子
小鼠脑组织的地图。总体而言,这些努力将建立一个强大的成像平台,这将
改变我们生成脑组织中不同细胞类型的详细分子图谱的能力。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAURAV CHOPRA其他文献
GAURAV CHOPRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAURAV CHOPRA', 18)}}的其他基金
Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
- 批准号:
10448092 - 财政年份:2022
- 资助金额:
$ 151.14万 - 项目类别:
Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
- 批准号:
10665719 - 财政年份:2022
- 资助金额:
$ 151.14万 - 项目类别:
Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
- 批准号:
10905022 - 财政年份:2022
- 资助金额:
$ 151.14万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 151.14万 - 项目类别:
Research Grant














{{item.name}}会员




