Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
基本信息
- 批准号:10665719
- 负责人:
- 金额:$ 56.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:AcademiaAccelerationAdoptedAffectAffinityArtificial IntelligenceArtificial Intelligence platformAutomationAwarenessBindingBiologicalChemical StructureChemicalsChemistryCodeCollaborationsCollectionCommunitiesComplexComputer softwareCoupledDataData AnalysesData SetDatabasesDecentralizationDevelopmentDiagnosticDisclosureEncapsulatedFaceFailureFeedbackGenerationsGovernmentHigh Pressure Liquid ChromatographyHumanInformation TechnologyInfrastructureInstitutionInterruptionIonsJointsLaboratoriesLearningLocationManualsMeasurementMedicineModelingMolecularMolecular StructureNational Center for Advancing Translational SciencesOutcomePatientsPerformanceProcessPropertyProtocols documentationPublishingReactionReproducibilityResearchResearch ProposalsResource AllocationResourcesScheduleScientistSecureSiteStandardizationSystemSystems IntegrationTechniquesTechnologyTestingTrainingVisionWorkapplication programming interfaceautomated analysisblockchaincomputing resourcescostcyber infrastructuredata integrationdata sharingdesigndistributed datadistributed ledgerdrug candidatedrug discoveryexperienceexperimental analysisexperimental studygraphical user interfaceinnovationinstrumentlearning algorithmlearning progressionnovelopen dataopen sourceprogramsscreeningtimelinetoolvirtual
项目摘要
PROJECT SUMMARY
Artificial Intelligence (AI) and Automation has the potential to accelerate several stages of the drug discovery
process, including the design-make-test-analyze optimization cycle, typically faced by medicinal chemists.
However, several roadblocks exist resulting in too long timelines to deliver much needed innovation to patients
with unmet needs. Both human and AI face similar limitations mainly due to disjointed steps needed to obtain
and integrate the data that is generated by different organizations or laboratories and cannot be readily shared
without disclosing IP-sensitive information (e.g., non-patented novel chemical structures). In addition, there is
lack of negative (failures) data available publicly, which are critical for generating accurate AI models, but are
typically not made available outside of the originating institution or laboratory due to a variety of reasons related
to IP. And, even among positive results, greater reproducibility of protocols is desirable. A solution to develop a
fully integrated system in-house can be effective but it is hard to scale and not easily adopted mainly due to the
costs and infrastructure involved. Our solution encapsulates the vision of NCATS ASPIRE program of integrating
and automating laboratories to accelerate the drug discovery process while taking into account the above
problems that exist. Blockchain, a distributed ledger technology, coupled with AI and Automation has the
potential to solve all of the above problems as it has done in several other technology sectors, such as finance
and medicine to securely share and learn from data without revealing its identity. We will develop a blockchain
based open science AI framework as a decentralized laboratory cloud for the drug discovery community to
enhance collaboration and reproducibility. This includes decentralized performance of experiments and enabling
efficient multi-party analysis and learning on remote datasets using application programming interface (API) and
graphical user interface (GUI) to engage both computational and experimental scientists. Continuous learning
from measurements and accessible data (with GUI for humans and API for machines) will enable unprecedented
reproducibility. Our decentralized blockchain network will be interfaced across four sites (Purdue, IBRI, IU and
NCATS) in a modular manner that is extendable to large scale to accommodate several thousand laboratories
without affecting efficiency at scale. Our network solution is modular, in that, it works with multiple resources
(instruments, databases) either within one laboratory or across multiple laboratories and organizations. This
distributed blockchain network will enable secure multi-party joint training of AI model on databases at different
locations (cloud instances, IU and NCATS) and schedule experiments with a physical instrument (Purdue) with
data interpretation and secure sharing of results to enhance the efficiency of cross-organizational and
collaborative research. The integrated API and GUI will be developed by utilizing core technology components
from the NCATS Information Technology Resource Branch to facilitate transfer and integration with the ASPIRE
platform. Collectively, this open-source solution will enhance cycle times to accelerate drug discovery research.
项目摘要
人工智能(AI)和自动化有可能加速药物发现的几个阶段
过程,包括设计-制造-测试-分析优化周期,通常由药物化学家面对。
然而,存在几个障碍,导致为患者提供急需的创新的时间表过长
未满足的需求。人类和人工智能都面临着类似的限制,主要是由于获得
整合不同组织或实验室生成的、无法轻易共享的数据
而不公开IP敏感信息(例如,非专利的新颖化学结构)。此外还有
缺乏公开的负面(失败)数据,这对于生成准确的人工智能模型至关重要,但
通常由于各种相关原因而不能在发起机构或实验室之外获得
到IP。而且,即使在阳性结果中,也希望方案具有更高的可重复性。一种解决方案,
内部完全集成的系统可能是有效的,但它很难扩展,不容易采用,主要是由于
成本和基础设施。我们的解决方案封装了NCATS ASPIRE计划的愿景,
自动化实验室以加速药物发现过程,同时考虑到上述因素
存在的问题。区块链是一种分布式账本技术,再加上人工智能和自动化,
解决上述所有问题的潜力,就像它在其他几个技术领域所做的那样,如金融
和医学来安全地共享和学习数据,而不会泄露其身份。我们将开发一个区块链
基于开放科学的人工智能框架,作为药物发现社区的分散实验室云,
加强协作和可重复性。这包括分散的实验性能,
使用应用程序编程接口(API)对远程数据集进行高效的多方分析和学习
图形用户界面(GUI),以吸引计算和实验科学家。不断学习
从测量结果和可访问的数据(使用人类的GUI和机器的API)将实现前所未有的
再现性我们的去中心化区块链网络将在四个站点(Purdue,IBRI,IU和
NCATS)以模块化的方式,可扩展到大规模,以容纳数千个实验室
而不影响规模效率。我们的网络解决方案是模块化的,因为它可以使用多种资源
(仪器,数据库)在一个实验室内或跨多个实验室和组织。这
分布式区块链网络将在不同的数据库上实现人工智能模型的安全多方联合训练。
位置(云实例,IU和NCATS),并使用物理仪器(Purdue)安排实验,
数据解释和安全共享结果,以提高跨组织和
合作研究。集成的API和GUI将利用核心技术组件开发
从NCATS信息技术资源分支,以促进转移和与ASPIRE的整合
平台总的来说,这个开源解决方案将缩短周期时间,加速药物发现研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAURAV CHOPRA其他文献
GAURAV CHOPRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAURAV CHOPRA', 18)}}的其他基金
Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
- 批准号:
10448092 - 财政年份:2022
- 资助金额:
$ 56.01万 - 项目类别:
Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
- 批准号:
10905022 - 财政年份:2022
- 资助金额:
$ 56.01万 - 项目类别:
Development of a high throughput system for molecular imaging of different cell types in mouse brain tissues
开发用于小鼠脑组织中不同细胞类型的分子成像的高通量系统
- 批准号:
10369883 - 财政年份:2021
- 资助金额:
$ 56.01万 - 项目类别:
相似海外基金
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
- 批准号:
2400967 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328975 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Continuing Grant
EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
- 批准号:
NE/Y000080/1 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Research Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
- 批准号:
10112700 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328973 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Continuing Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328972 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332916 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
- 批准号:
2332917 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
- 批准号:
2328974 - 财政年份:2024
- 资助金额:
$ 56.01万 - 项目类别:
Continuing Grant
Radiation GRMHD with Non-Thermal Particle Acceleration: Next-Generation Models of Black Hole Accretion Flows and Jets
具有非热粒子加速的辐射 GRMHD:黑洞吸积流和喷流的下一代模型
- 批准号:
2307983 - 财政年份:2023
- 资助金额:
$ 56.01万 - 项目类别:
Standard Grant














{{item.name}}会员




