Discovery & Synthesis Chemputer: An intelligent universal system for automated chemical synthesis and discovery across different hardware and scales
发现
基本信息
- 批准号:10905022
- 负责人:
- 金额:$ 21.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:Active LearningArtificial IntelligenceBenchmarkingChemicalsChemistryCodeCollaborationsCommunitiesCustomData AnalysesData SetDatabasesFundingGenerationsGrantInfrastructureInstructionIntelligenceLaboratoriesLanguageLife Cycle StagesLiteratureModelingMolecular StructureNational Center for Advancing Translational SciencesNatural Language ProcessingProceduresProgramming LanguagesReactionReportingResearchSoftware ToolsSpecific qualifier valueSystemTestingTrainingUniversitiesWorkWritingchemical synthesisdesigndigitalexperimental studyfitnessheuristicsopen sourcestructured datatool
项目摘要
Project Summary
In this supplement to the collaborative project initiated between the Digital Chemistry Group at the University of
Glasgow and The NCATS ASPIRE laboratory we will deepen the integration of the χDL chemical programming
language with the Open Reaction Database (ORD) as well as integrating Large Language Model (LLM)-based
AI approaches into the generation of χDL procedures directly from retrosynthetic analyses of target compounds.
This work will be accomplished during the term of the original grant. Two specific aims are proposed: 1. Develop
a χDL to ORD bridge which can be instantiated on a chemputer-based physical synthesis platform. (Coley Lab
collaboration); 2. Integrate large language models (LLMs) within the Chemical Description Language (χDL)
framework to generate develop and interface χDLs for closed-loop active learning infrastructures (Chopra Lab
collaboration). These aims will be developed over the term of the funding in a highly integrated and collaborative
working modus operandi. For specific aim one we will develop a set of converters bridging the three stages of
the experimental life cycle: planning, execution, and reporting. This is achieved by integrating the planning and
reporting stages, which can be fully represented by the structured data schema of the ORD, with the central
stage of execution, which is fully expressible in χDL. These converters will include some level of inference,
through heuristics or otherwise, to fill in procedural details that might not be explicitly defined in the original plan.
They can also validate if a plan can be executed in a particular lab in terms of hardware compatibility. We will
realize such converters as open-source software tools and test these tools on a chemputer hardware platform
for a set of benchmark reactions. For specific aim two we will develop an extension to our Natural Language
Processing (NLP) approach to χDL procedure generation by using generated data sets to train a LLM AI system
to be able to produce χDL instruction files directly from retrosynthetic analysis of a desired molecular structure.
This will be accomplished by building a custom set of LLM agents designed to utilize the χDL NLP model to
interpret and write valid χDL code based on user input. By integrating these with the χDL blueprints which are
being developed for benchmark reactions as part of the NCATS ASPIRE collaboration, these χDL instructions
can then be generated from automated retrosynthetic analysis of a given molecule, or class of molecules even
if the suggested reactions do not yet exist in the chemical literature. We will produce specifications for a further
LLM based AI system to interpret the data generated by automatic analysis and to suggest new subsequent
experiments based on a pre-defined fitness function optimization (for example yield or purity of products) which
can be defined experimentally in the automated system.
项目摘要
在这个补充的合作项目之间发起的数字化学组在大学
格拉斯哥和NCATS ASPIRE实验室,我们将深化χDL化学编程的整合
语言与开放反应数据库(ORD)以及集成大型语言模型(LLM)的基础上,
AI方法直接从目标化合物的逆合成分析生成χDL程序。
这项工作将在原赠款期限内完成。提出了两个具体目标:1。发展
一个xDL到ORD桥,可以在基于化学计算机的物理合成平台上实例化。(Coley Lab)
协作); 2.在化学描述语言(χDL)中集成大型语言模型(LLM)
为闭环主动学习基础设施(Chopra实验室)生成开发和接口χ DL的框架
协作)。这些目标将在供资期间以高度综合和协作的方式制定。
工作模式对于具体的目标一,我们将开发一套转换器桥接的三个阶段,
实验生命周期:计划、执行和报告。这是通过整合规划和
报告阶段,可以完全由ORD的结构化数据模式表示,中央
执行阶段,可以用xDL完全表示。这些转换器将包括某种程度的推理,
通过物流或其他方式,填写原始计划中可能没有明确定义的程序细节。
他们还可以根据硬件兼容性验证计划是否可以在特定实验室中执行。我们将
将这些转换器实现为开源软件工具,并在计算机硬件平台上测试这些工具
一组基准反应。对于具体的目标二,我们将开发一个扩展到我们的自然语言
通过使用生成的数据集来训练LLM AI系统,
能够直接从所需分子结构的逆合成分析中生成xDL指令文件。
这将通过构建一组定制的LLM代理来实现,这些代理旨在利用χDL NLP模型来
基于用户输入解释和写入有效的χDL代码。通过将这些与χDL蓝图相结合,
作为NCATS ASPIRE合作的一部分,正在为基准反应开发这些χDL指令,
然后可以从给定分子或一类分子的自动化逆合成分析中产生,
如果所建议的反应在化学文献中还不存在的话。我们将生产规格为进一步
基于LLM的AI系统解释自动分析生成的数据,并建议新的后续
基于预定义的适应度函数优化(例如产物的产率或纯度)的实验,
可以在自动化系统中通过实验来定义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
GAURAV CHOPRA其他文献
GAURAV CHOPRA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('GAURAV CHOPRA', 18)}}的其他基金
Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
- 批准号:
10448092 - 财政年份:2022
- 资助金额:
$ 21.72万 - 项目类别:
Chemical instruments-aware distributed blockchain based open AI platform to accelerate drug discovery
基于化学仪器感知的分布式区块链开放人工智能平台,加速药物发现
- 批准号:
10665719 - 财政年份:2022
- 资助金额:
$ 21.72万 - 项目类别:
Development of a high throughput system for molecular imaging of different cell types in mouse brain tissues
开发用于小鼠脑组织中不同细胞类型的分子成像的高通量系统
- 批准号:
10369883 - 财政年份:2021
- 资助金额:
$ 21.72万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Standard Grant
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Discovery Projects
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
EU-Funded
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 21.72万 - 项目类别:
Fellowship














{{item.name}}会员




