Nanostructured Hydrogel Surfaces for Artificial Extracellular Matrix
用于人工细胞外基质的纳米结构水凝胶表面
基本信息
- 批准号:10373590
- 负责人:
- 金额:$ 18.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAccidentsAddressAdhesionsAdoptedAgingAreaBehaviorBenchmarkingBindingBiologicalCarbohydratesCartilageCell AdhesionCell TransplantationCell surfaceCellsChemical StructureChemicalsChemistryChondrogenesisClinicalCollagenCuesDepositionDifferentiation and GrowthDiseaseElementsEnvironmentExtracellular MatrixFiberFilmFutureGelGenerationsGeometryGoalsHealthHumanHydrogelsHypoxiaImplantIndividualInjuryInstructionLengthLigandsLysineMechanicsMesenchymal Stem CellsModificationModulusMusMyoblastsNanostructuresOrganOrgan TransplantationOsteogenesisPatternPeptidesPerfusionPrintingPropertyRegenerative MedicineResolutionSideSignal TransductionSiteSmooth Muscle MyocytesSpecific qualifier valueStem cell transplantStructureSurfaceSurface PropertiesTechnologyTestingThickThinnessTissuesTransplantationTransplantation SurgeryUnited StatesWaiting Listsangiogenesisbasebiomaterial compatibilitybonecell growthchemical propertydesignexperimental studyflexibilityfunctional lossfunctional restorationimprovedin vivoinnovationlipid biosynthesismechanical propertiesmechanical signalpolyacrylamidepolydiacetylenepolydimethylsiloxanepreventprototyperegenerative tissuerepairedscaffoldstem cell growthstem cellsstemnesssuccesstissue regenerationtissue support frametransplantation therapyvolumetric muscle losswound healing
项目摘要
PROJECT SUMMARY
Scaffolded stem cell transplantation has the potential to provide structured chemical and mechanical cues to
guide cell growth into functional tissues for regenerative medicine. However, significant challenges have limited
the clinical success of this approach. Cells implanted in large scaffolds often have limited viability due to
hypoxic conditions in the host, while cells injected individually or in small clusters often suffer from poor
retention at the site of injury. Hydrogels are commonly utilized as stem cell scaffold materials because they
confer substantial flexibility in terms of chemical composition and ligand integration. However, hydrogels are
also typically amorphous, limiting control over ligand presentation (important for adhesion and signaling), and
lacking structural cues such as fibers that are present in biological ECM, which impacts mechanical strength.
We have recently demonstrated that it is possible to generate stable, 1-nm-resolution functional patterns on
amorphous polyacrylamide and polydimethylsiloxane surfaces, using sub-nm-thick films of highly ordered
polydiacetylenes (PDAs) that are preassembled and covalently transferred to the hydrogel surface. Our
approach potentially addresses both chemical and mechanical challenges associated with hydrogel stem cell
scaffolds, enabling generation of cell-instructive hydrogel tapes that can be shaped to create 3D scaffolds.
However, to be useful in clinical settings, this strategy will need to be validated with: (1) commonly used
hydrogel stem cell scaffold materials, (2) hydrogel moduli matching the range commonly associated with
tissues, and (3) films thin enough for adequate perfusion to prevent hypoxia and enable normal secretome
interactions. Here, we develop a platform technology based on cell-instructive hydrogel tapes, benchmarking
their chemical and mechanical properties, and their impacts on human mesenchymal stem cells (hMSCs).
In Aim 1, we evaluate the hypothesis that PDA surface functionalization can improve chemical control over
surfaces of hydrogels common in regenerative medicine, orienting and spatially clustering ligand presentation,
to modify stem cell growth in a predictable fashion. We test this by culturing hMSCs on surfaces designed to
maintain stemness or to induce specified differentiation behavior (angiogenesis, adipogenesis,
chondrogenesis), benchmarking against common stochastic hydrogel modification strategies.
In Aim 2, we evaluate the hypothesis that our PDA surface-functionalization approach can improve the
mechanical and handling properties of thin, soft hydrogel films, enabling creation of cell-instructive hydrogel
tapes. We generate and test impacts of paired tapes as cell sandwich scaffolds and 3D constructs that provide
structured chemical surfaces and mechanical environments, while maximizing perfusion to and from cells.
Overall, this proposal develops a modular surface functionalization strategy that can be easily integrated with
many existing hydrogels for tissue scaffolds, providing structured ligand presentation and mechanical strength
aimed at improving utility in clinical cell transplantation therapies.
项目摘要
脚手架干细胞移植具有提供结构化的化学和机械线索的潜力
将细胞生长引导到功能组织中,以进行再生医学。但是,重大挑战有限
这种方法的临床成功。大型支架中植入的细胞通常由于
宿主中的低氧条件,而单独注射或小簇中注射的细胞通常患有较差
在受伤部位保留。水凝胶通常用作干细胞支架材料,因为它们
在化学组成和配体整合方面具有很大的灵活性。但是,水凝胶是
也通常是无定形的,限制对配体呈现(对于粘附和信号传导很重要)的控制
缺乏生物ECM中存在的纤维等结构线索,从而影响机械强度。
我们最近证明,可以在
使用高度有序的sub-nm厚膜
聚二乙烯(PDA)被预组装并共价转移到水凝胶表面。我们的
方法可能解决与水凝胶干细胞相关的化学和机械挑战
脚手架,使能够形成以创建3D脚手架的细胞结构水凝胶磁带的产生。
但是,要在临床环境中有用,需要对此策略进行验证:(1)常用
水凝胶干细胞支架材料,(2)水凝胶模量与通常相关的范围
组织,(3)薄膜足够稀薄,足以灌注以防止缺氧并启用正常分泌组
互动。在这里,我们开发了一种基于细胞结构水凝胶磁带的平台技术,基准测试
它们的化学和机械性能及其对人间充质干细胞(HMSC)的影响。
在AIM 1中,我们评估了PDA表面功能化可以改善化学控制的假设
在再生医学中常见的水凝胶表面,定向和空间聚类配体呈现,
以可预测的方式修饰干细胞生长。我们通过在旨在的表面上培养HMSC来对此进行测试
保持干性或诱导特定的分化行为(血管生成,脂肪生成,
软骨发生),针对常见的随机水凝胶修饰策略进行基准测试。
在AIM 2中,我们评估了我们的PDA表面官能化方法可以改善的假设
薄的软水凝胶膜的机械和处理特性,从而创建细胞教学水凝胶
磁带。我们将配对磁带的影响和测试影响作为细胞三明治支架和3D构造提供
结构化的化学表面和机械环境,同时最大程度地提高细胞的灌注。
总体而言,该建议制定了一个模块化的表面功能化策略,可以轻松地与
许多现有用于组织支架的水凝胶,提供结构化的配体表现和机械强度
旨在改善临床细胞移植疗法的效用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shelley Ann Claridge其他文献
Shelley Ann Claridge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shelley Ann Claridge', 18)}}的其他基金
Nanostructured Hydrogel Surfaces for Artificial Extracellular Matrix
用于人工细胞外基质的纳米结构水凝胶表面
- 批准号:
10705022 - 财政年份:2022
- 资助金额:
$ 18.4万 - 项目类别:
Single-Molecule Scanning Tunneling Spectroscopy of Surface-Tethered Proteins
表面束缚蛋白的单分子扫描隧道光谱
- 批准号:
7928338 - 财政年份:2009
- 资助金额:
$ 18.4万 - 项目类别:
Single-Molecule Scanning Tunneling Spectroscopy of Surface-Tethered Proteins
表面束缚蛋白的单分子扫描隧道光谱
- 批准号:
7991338 - 财政年份:2009
- 资助金额:
$ 18.4万 - 项目类别:
Single-Molecule Scanning Tunneling Spectroscopy of Surface-Tethered Proteins
表面束缚蛋白的单分子扫描隧道光谱
- 批准号:
8146179 - 财政年份:2009
- 资助金额:
$ 18.4万 - 项目类别:
相似国自然基金
多入口下穿隧道合流区域交通事故演化机理与自解释调控方法
- 批准号:52302437
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
源于随机行人碰撞事故边界反求的头部损伤评价准则及风险预测
- 批准号:52372348
- 批准年份:2023
- 资助金额:54 万元
- 项目类别:面上项目
面向救援与疏散的危化品储运灾害事故情景推演与应急态势评估方法
- 批准号:52374208
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
聚变堆真空室内失水事故射流闪蒸特性研究
- 批准号:12305183
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
燃料样品辐照流道堵塞事故演化机理及全堆响应研究
- 批准号:12375178
- 批准年份:2023
- 资助金额:52.00 万元
- 项目类别:面上项目
相似海外基金
Extending Reach, Accuracy, and Therapeutic Capabilities: A Soft Robot for Peripheral Early-Stage Lung Cancer
扩大范围、准确性和治疗能力:用于周围早期肺癌的软机器人
- 批准号:
10637462 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
User-Centered Design of a Proactive RF-Based Wearable Bladder Monitor for Toilet Training of Children with ASD/IDD
以用户为中心的主动式射频可穿戴膀胱监测器设计,用于 ASD/IDD 儿童如厕训练
- 批准号:
10742670 - 财政年份:2023
- 资助金额:
$ 18.4万 - 项目类别:
Project 1: Deployable Software for the Rapid Assessment of Organ Dose Following Radionuclide Intakes
项目 1:用于快速评估放射性核素摄入后器官剂量的可部署软件
- 批准号:
10327396 - 财政年份:2022
- 资助金额:
$ 18.4万 - 项目类别:
Project 3: Elemental Microscopy for Detection of Radionuclide Distribution and Development of Cell and Tissue Phantoms
项目 3:用于检测放射性核素分布和细胞和组织模型开发的元素显微镜
- 批准号:
10589884 - 财政年份:2022
- 资助金额:
$ 18.4万 - 项目类别:
Nanostructured Hydrogel Surfaces for Artificial Extracellular Matrix
用于人工细胞外基质的纳米结构水凝胶表面
- 批准号:
10705022 - 财政年份:2022
- 资助金额:
$ 18.4万 - 项目类别: