Decision dynamics during a continuous-time foraging task: a reinforcement learning approach

连续时间觅食任务期间的决策动态:强化学习方法

基本信息

  • 批准号:
    10373999
  • 负责人:
  • 金额:
    $ 0.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-04-01 至 2022-04-15
  • 项目状态:
    已结题

项目摘要

Project Summary It is likely that evolution has strongly shaped the neural circuitry of the reward systems to optimize performance in the many tasks involved in foraging for resources, a critical part of every animal's life. This proposition was the inspiration for the development of “optimal” foraging theories, such as the marginal value theorem (MVT), which derive analytically the foraging behavior (sequences of choices) that maximizes the long-term rate of reward, usually considered to be energy intake. While these analytic theories have had some success in describing animal behavior, the theories themselves rely on strict assumptions about the environment that do not hold in many natural situations and are not flexible enough to generalize to more complicated environments or other tasks. Therefore, the end goal of this project is to understand which of a family of general-purpose decision (reinforcement-learning) algorithms is most likely to be employed by the brain to solve value-based tasks and to use this knowledge to predict under what circumstances these algorithms will lead to optimal or suboptimal behavior. With this project, I will improve our understanding of animal decision processes in these more natural environments by performing a foraging experiment that is continuous in time and violates many of the assumptions that prior analytical theories of foraging rely on. Rats motivated by thirst will be allowed to sample freely from two or three (palatable or aversive) tastant options (“patches”) in an open field and, critically, will be allowed to direct their encounters with the options, something which past experiments have lacked. Measurements of licking (consumption) behavior at each of the tastant options will allow me to measure the decision dynamics of the rat over several 1-hour sessions. In particular, I will measure how the sampling times at each option correlate with the values of the alternatives to gain insight into how rats combine the values of available options to make decisions. As a complement to this behavioral task, I will simulate a set of reinforcement learning agents that vary in the rules used for learning action values, choosing actions, and planning actions. By quantitatively comparing the decision behavior of these artificial agents to that obtained from rats I will determine which of the simulated agents best reproduces the rat behavior, giving insight into the decision algorithms used by rats and providing a direction for future electrophysiological recordings during this task. Importantly, this comparison of animal behavior with that produced by artificial agents will allow me to assess how close to “optimal” rat behavior is and, in the cases where it is suboptimal, to provide quantitative explanations for why it is so.
项目摘要 很可能进化强烈地塑造了奖励系统的神经回路, 在许多涉及觅食资源的任务中表现出色,这是每个动物生活的关键部分。这 这一命题启发了“最优”觅食理论的发展,如边缘觅食理论。 价值定理(MVT),它推导出分析觅食行为(选择序列), 最大化长期回报率,通常被认为是能量摄入。虽然这些分析 理论在描述动物行为方面取得了一些成功,但理论本身依赖于严格的 关于环境的假设在许多自然情况下不成立,而且不够灵活 以推广到更复杂的环境或其他任务。因此,本项目的最终目标是 了解通用决策(学习)算法家族中的哪一个最有可能 被大脑用来解决基于价值的任务,并利用这些知识来预测 在某些情况下,这些算法将导致最优或次优行为。 通过这个项目,我将提高我们对动物决策过程的理解, 环境通过执行觅食实验,这是连续的时间,并违反了许多 先前的觅食分析理论所依赖的假设。被口渴驱使的老鼠将被允许 从两个或三个(可口的或厌恶的)促味剂选项(“块”)中自由地取样, 关键的是,将被允许指导他们与选项的接触,这是过去实验所做的。 缺乏。在每一种促味剂的选择下测量舔(消耗)行为将使我能够 在几个1小时的会话中测量大鼠的决策动态。特别是,我将衡量如何 每个选项的采样时间与替代品的值相关,以了解大鼠如何 联合收割机结合可用选项的值来做出决策。 作为这个行为任务的补充,我将模拟一组强化学习代理,它们在 用于学习动作值、选择动作和规划动作的规则。通过定量 将这些人工代理的决策行为与从大鼠获得的决策行为进行比较,我将确定 模拟的代理最好地再现了大鼠的行为,从而深入了解了 大鼠,并提供了一个方向,为未来的电生理记录在这项任务。重要的是这 通过比较动物行为和人工代理产生的行为,我可以评估 “最佳”大鼠行为是,在次优的情况下, 为什么会这样。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Nicolaas Ballintyn其他文献

Benjamin Nicolaas Ballintyn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Wireless CMOS device for observing real-time brain activity and animal behavior
用于观察实时大脑活动和动物行为的无线 CMOS 设备
  • 批准号:
    23K06786
  • 财政年份:
    2023
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Animal, Behavior and Tissue Core
动物、行为和组织核心
  • 批准号:
    10496282
  • 财政年份:
    2023
  • 资助金额:
    $ 0.52万
  • 项目类别:
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    RGPIN-2022-03096
  • 财政年份:
    2022
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Discovery Grants Program - Individual
The role of biological interactions in the evolution of animal behavior
生物相互作用在动物行为进化中的作用
  • 批准号:
    RGPIN-2019-06689
  • 财政年份:
    2022
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Discovery Grants Program - Individual
Development of Semi-Supervised Learning Method using Compressed Video for Real-Time Animal Behavior Analysis
使用压缩视频进行实时动物行为分析的半监督学习方法的开发
  • 批准号:
    22H03637
  • 财政年份:
    2022
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Landscapes of fear in the Anthropocene: Linking predation risk and human disturbance to animal behavior and ecological outcomes
人类世的恐惧景观:将捕食风险和人类干扰与动物行为和生态结果联系起来
  • 批准号:
    DGECR-2022-00323
  • 财政年份:
    2022
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Discovery Launch Supplement
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10315486
  • 财政年份:
    2021
  • 资助金额:
    $ 0.52万
  • 项目类别:
Neural and molecular mechanisms of microbe-sensing in the control of animal behavior - Resubmission - 1
微生物传感控制动物行为的神经和分子机制 - 重新提交 - 1
  • 批准号:
    10412977
  • 财政年份:
    2021
  • 资助金额:
    $ 0.52万
  • 项目类别:
REU Site: Animal Behavior in Context
REU 网站:背景下的动物行为
  • 批准号:
    2050311
  • 财政年份:
    2021
  • 资助金额:
    $ 0.52万
  • 项目类别:
    Standard Grant
Molecular recording to predict cell fate decisions and animal behavior
分子记录预测细胞命运决定和动物行为
  • 批准号:
    10260139
  • 财政年份:
    2021
  • 资助金额:
    $ 0.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了