Nanoscale structure and function of desmosomes
桥粒的纳米结构和功能
基本信息
- 批准号:10380815
- 负责人:
- 金额:$ 32.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2024-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdherens JunctionAdhesionsAdhesivesAntibodiesArchitectureAutoantibodiesBindingBiological MarkersBiophysicsBiopsy SpecimenBullaC-terminalCadherin DomainCadherinsCalciumCell AdhesionCell-Cell AdhesionCellsCellular biologyCharacteristicsComplexCore ProteinCouplesCytoskeletonDefectDehydrationDependenceDermatologicDesmosomesDevelopmentDiseaseElectronsElementsEnvironmental ProtectionEpidermisEpithelialFluorescence MicroscopyFutureGoalsGrowthHeart DiseasesHumanImageImmunoglobulin GIndividualIntermediate FilamentsLeadLifeLinkMacromolecular ComplexesMapsMeasuresMechanical StressMechanicsMediatingMethodsMicroscopyModelingMolecularMultiprotein ComplexesOpticsOrganizational ChangePRKCA genePathogenesisPemphigus VulgarisPhosphorylationPolarization MicroscopyPrimary Cell CulturesProcessProtein DynamicsProteinsRegulationResistanceResolutionSignal TransductionSkinStressStructureStructure-Activity RelationshipTertiary Protein StructureTestingTissue SampleTissuesdesmoglein IIIdesmoplakinexperimental studyextracellularhuman diseasehuman tissueinnovationinsightinterdisciplinary approachkeratinocytemutantnanoscalenovelnovel strategiespotential biomarkerskin disordertargeted treatmenttherapeutic developmenttherapeutic targettoolwound healing
项目摘要
Project Summary
The epidermis provides protection from environmental insult, dehydration and stress. Mechanical strength is
derived from robust cell-cell adhesive junctions called desmosomes is a fundamental feature of epidermal
tissue. Desmosomes are macromolecular complexes composed of desmosomal cadherins, which mediate cell-
cell adhesion, and a number of intracellular plaque proteins, including desmoplakin, which couples the complex
to the intermediate filament cytoskeleton. Notably, aberrant desmosome function can lead to severe epidermal
disorders. Pemphigus vulgaris is a potentially life-threatening skin blistering disease caused by autoantibodies
directed against the desmosomal cadherin desmoglein-3 (Dsg3) that leads to disruption of cell-cell adhesion.
Though responsible for mechanical integrity, desmosomes can switch between strong and weak states in
development and wound healing. This functional transition occurs with minimal change to the core proteins
comprising the desmosome. We hypothesize that the architecture or organization of proteins within a
desmosome drives its adhesive function. However, due to the size and molecular complexity of desmosomes
there is a lack of tools to study this structure-function relationship creating a critical barrier in this field. We will
use a multi-disciplinary approach to address this challenge and to test the hypothesis that the biophysical
organization of proteins in the desmosome provides a mechanism to regulate adhesion. We recently
developed two highly innovative and complimentary super-resolution fluorescence microscopy approaches to
study the order and organization of proteins within desmosomes. Our goal is to elucidate how the order and
organization of proteins impacts the adhesive function of desmosomes in healthy and disease states. This will
provide novel insight into the structure and function of these critical complexes. In Aim 1 we will determine the
how the organization of plaque proteins changes in different adhesive states with the goal of identifying
functionally sensitive elements and potential biomarkers. In Aim 2 we will use a live cell approach to study
mechanisms that confer ordering of desmosomal cadherins, and how this order is altered with function. Finally,
in Aim 3 we will define changes to the architecture of the desmosome induced in pemphigus vulgaris, with the
goal of facilitating development of targeted therapeutics. We will use primary human keratinocytes and human
tissue biopsy samples to address these questions. Accomplishment of these goals will provide a fundamental
understanding and framework of how protein organization and dynamics influence the adhesive function of
desmosomes in healthy and disease states.
项目摘要
表皮提供保护免受环境损害、脱水和压力。机械强度
来源于称为桥粒的坚固的细胞-细胞粘附连接是表皮细胞的基本特征,
组织.桥粒是由桥粒钙粘蛋白组成的大分子复合物,介导细胞凋亡。
细胞粘附,以及一些细胞内斑块蛋白,包括桥粒斑蛋白,其将复合物
中间丝细胞骨架。值得注意的是,异常的桥粒功能可导致严重的表皮损伤。
紊乱寻常型天疱疮是一种由自身抗体引起的可能危及生命的皮肤起泡性疾病
针对桥粒钙粘蛋白桥粒芯糖蛋白-3(Dsg 3),其导致细胞-细胞粘附的破坏。
虽然负责机械完整性,但桥粒可以在强状态和弱状态之间切换,
发育和伤口愈合。这种功能性转变发生时,核心蛋白的变化最小
包括桥粒。我们假设,蛋白质的结构或组织在一个
桥粒驱动其粘附功能。然而,由于桥粒的大小和分子复杂性,
缺乏研究这种结构-功能关系的工具,这在该领域中造成了严重的障碍。我们将
使用多学科的方法来应对这一挑战,并测试假设,生物物理
桥粒中蛋白质的组织提供了调节粘附的机制。我们最近
开发了两种高度创新且互补的超分辨率荧光显微镜方法,
研究桥粒内蛋白质的顺序和组织。我们的目标是阐明秩序和
在健康和疾病状态下,蛋白质的组织影响桥粒的粘附功能。这将
为这些关键复合物的结构和功能提供了新的见解。在目标1中,我们将确定
斑块蛋白的组织在不同的粘附状态下如何变化,目的是识别
功能敏感元件和潜在的生物标志物。在目标2中,我们将使用活细胞方法来研究
赋予桥粒钙粘蛋白排序的机制,以及这种顺序如何随着功能而改变。最后,
在目标3中,我们将定义寻常型天疱疮中诱导的桥粒结构的变化,
目标是促进靶向治疗的发展。我们将使用原代人角质形成细胞和人
组织活检样本来解决这些问题。这些目标的实现将提供一个基本的
蛋白质组织和动力学如何影响粘附功能的理解和框架
桥粒在健康和疾病状态。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Live-Cell Total Internal Reflection Fluorescence (TIRF) Microscopy to Investigate Protein Internalization Dynamics.
活细胞全内反射荧光 (TIRF) 显微镜研究蛋白质内化动力学。
- DOI:10.1007/978-1-0716-2035-9_3
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rao,TejeshwarC;Nawara,TomaszJ;Mattheyses,AlexaL
- 通讯作者:Mattheyses,AlexaL
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexa Lynn Mattheyses其他文献
Alexa Lynn Mattheyses的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexa Lynn Mattheyses', 18)}}的其他基金
Lightsheet Microscope for the UAB High-Resolution Imaging Facility
用于 UAB 高分辨率成像设备的光片显微镜
- 批准号:
10429045 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10320359 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Administrative Supplement: iLas Ring TIRF for 3D super-resolved imaging of cellular force magnitude and direction
行政补充:iLas Ring TIRF 用于细胞力大小和方向的 3D 超分辨成像
- 批准号:
10389532 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Administrative Supplement: Summer undergraduate research:Imaging the Molecular Forces Generated by Synthetic Motors
行政补充:暑期本科生研究:合成电机产生的分子力成像
- 批准号:
10393870 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10091485 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Visualizing Desmosome Structure and Dynamics by Polarized Fluorescence Microscopy
通过偏振荧光显微镜观察桥粒结构和动力学
- 批准号:
8773042 - 财政年份:2014
- 资助金额:
$ 32.34万 - 项目类别:
相似海外基金
Oral pathogen - mediated pro-tumorigenic transformation through disruption of an Adherens Junction - associated RNAi machinery
通过破坏粘附连接相关的 RNAi 机制,口腔病原体介导促肿瘤转化
- 批准号:
10752248 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Adherens junction dynamics and function in epithelial tissue morphogenesis
粘附连接动力学和上皮组织形态发生中的功能
- 批准号:
469118 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Operating Grants
Adherens Junction dysfunction in Hidradenitis Suppurativa
化脓性汗腺炎的粘附连接功能障碍
- 批准号:
10701323 - 财政年份:2022
- 资助金额:
$ 32.34万 - 项目类别:
Adherens junction proteins in neuron-glia interactions
神经元-胶质细胞相互作用中的粘附连接蛋白
- 批准号:
9978138 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Elucidation of the function of Focal adherens junction in morphogenesis
阐明焦点粘附连接在形态发生中的功能
- 批准号:
19K16145 - 财政年份:2019
- 资助金额:
$ 32.34万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Identifying and characterizing the effect of Aip1 on adherens junction remodeling in Drosophila follicular epithelium
鉴定和表征 Aip1 对果蝇滤泡上皮粘附连接重塑的影响
- 批准号:
528450-2018 - 财政年份:2018
- 资助金额:
$ 32.34万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
10166863 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
Src-mediated pathways regulating adherens junction assembly.
Src 介导的途径调节粘附连接组装。
- 批准号:
9310733 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
The function and interaction of focal adhesion and adherens junction in bone mechanosensing and mechanotransduction.
粘着斑和粘附连接在骨力传感和力转导中的功能和相互作用。
- 批准号:
17K17307 - 财政年份:2017
- 资助金额:
$ 32.34万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
a-catenin and its binding partners in adherens junction assembly and function
α-连环蛋白及其在粘附连接组装和功能中的结合伙伴
- 批准号:
357714 - 财政年份:2016
- 资助金额:
$ 32.34万 - 项目类别:
Operating Grants