Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
基本信息
- 批准号:10091485
- 负责人:
- 金额:$ 38.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-01-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAntigensAtomic Force MicroscopyBiochemicalBiochemistryBiologicalBiological ProcessBiomechanicsBlood coagulationCell Surface ReceptorsCell divisionCell physiologyCellsCoagulation ProcessDNADevelopmentDiagnosisDiseaseEmbryonic DevelopmentFamilyFibroblastsFluorescenceFluorescence MicroscopyFluorescence PolarizationFluorescence Resonance Energy TransferFocal AdhesionsGoalsHemostatic functionImageImaging technologyImmobilizationIndividualIntercellular JunctionsLifeLinkMagnetismMapsMeasurementMeasuresMechanicsMethodsMicroscopeModelingMolecularMolecular ConformationNanotechnologyNatureNeoplasm MetastasisOpticsOrganismPathway interactionsPlatelet ActivationPlatelet aggregationPolarization MicroscopyReceptor CellResolutionScienceSignal PathwaySignal TransductionSpectrum AnalysisStrokeStructureT-LymphocyteTechniquesTechnologyTestingTimeTractionTraction Force MicroscopyWorkbasebiological systemsexperiencefluorescence imagingfluorophorefunctional outcomesimprovedinstrumentationmechanical forcemechanotransductionmigrationmillisecondmolecular dynamicsmolecular imagingmolecular mechanicsnanoscalepublic health relevancereceptorsingle moleculestemstem cell differentiationstem cellssymposiumtechnique developmenttemporal measurementtooltransmission processtumor growth
项目摘要
Project Summary
Cells are highly dynamic, squeezing, pulling, and tugging on their surroundings and on each other. Each
individual interaction involves forces. These forces are felt by specific receptors and molecules. Although small
in magnitude (pN), these molecular forces can have profound biological impacts in many aspects of cellular life
including the fate of differentiating stem cells, cell division, cancer metastasis, and blood clotting. Therefore, the
ability to characterize the interplay between physical forces and biochemical signals is a critical component of
understanding signaling pathways in living systems. There are two main techniques used to study molecular
mechanobiology: single molecule force spectroscopy (SMFS) and traction force microscopy (TFM) based
methods. While powerful, these approaches suffer from several drawbacks. SMFS measures individual receptor
forces (pN), but it does so only one molecule at a time. Conversely TFM provides spatial maps of cellular forces,
but on the nN scale, orders of magnitude larger than the forces applied by individual cell receptors. To bridge
these approaches, we invented molecular tension fluorescence microscopy (MTFM) which uses conventional
fluorescence microscopy to map cellular forces with pN resolution by using a calibrated molecular force probe.
The goal of this proposal is to transform the capabilities of MTFM allowing orders of magnitude improvement in
spatial and temporal resolution as well as the mapping of force orientation. Molecular mechanobiology remains
at the fringes of biomedical sciences because of the lack of tools to precisely quantify and link mechanics to
cellular biochemistry. Our goal is to transform the field of molecular mechanobiology by developing new imaging
technologies to enable the study cellular forces at unprecedented resolution. These technologies, centered
around the DNA-based MTFM probes, will provide a broadly applicable platform of technology to investigate
molecular mechanics, and the functional outcomes of molecular forces, in diverse biological systems. In Aim 1
we will address the spatial resolution gap, and leverage the DNA-based force probes to develop super-resolution
force-PAINT with the goal of dynamic force imaging with 20 nm spatial resolution. In Aim 2 we will probe the
dynamics of forces and force fluctuations by harnessing the power of two approaches, FRAP and FCS, to study
molecular force dynamics with nsec to msec time resolution. Finally, in Aim 3 we will leverage fluorescence
polarization microscopy to measure the 3D orientations of molecular forces. We will use fibroblast focal
adhesions, platelet activation and coagulation, and T cell antigen recognition to test and verify our approach.
Accomplishment of these goals will provide a new toolkit for understanding molecular forces and generating a
framework of how force organization and dynamics influence cellular function in healthy and disease states.
项目摘要
细胞是高度动态的,挤压,拉动和拉扯周围环境和彼此。
个体间的相互作用涉及到力。这些力被特定的受体和分子感受到。虽然很小,
在量值(pN)上,这些分子力可以在细胞生命的许多方面产生深远的生物学影响
包括分化干细胞的命运、细胞分裂、癌症转移和血液凝固。因此,
表征物理力和生化信号之间相互作用的能力是
了解生命系统中的信号通路。有两种主要的技术用于研究分子
机械生物学:基于单分子力谱(SMFS)和牵引力显微镜(TFM)的
虽然强大,但这些方法存在几个缺点。SMFS测量个体受体
力(pN),但它一次只对一个分子起作用。相反,TFM提供了细胞力的空间图,
但在nN尺度上,比单个细胞受体施加的力大几个数量级。
这些方法,我们发明了分子张力荧光显微镜(MTFM),它使用传统的
荧光显微镜通过使用校准的分子力探针以pN分辨率绘制细胞力。
该提案的目标是改变MTFM的功能,从而在以下方面实现数量级的改进:
空间和时间分辨率以及力方向的映射。分子机械生物学仍然存在
在生物医学科学的边缘,因为缺乏工具来精确量化和联系力学,
我们的目标是通过开发新的成像技术来改变分子机械生物学领域
技术,使研究细胞的力量在前所未有的分辨率。这些技术,集中
围绕基于DNA的MTFM探针,将提供一个广泛适用的技术平台,
分子力学,以及分子力在不同生物系统中的功能结果。
我们将解决空间分辨率的差距,并利用基于DNA的力探针来开发超分辨率
力敏PAINT的目标是动态力成像,空间分辨率为20 nm。在目标2中,我们将探讨
力和力波动的动力学,利用两种方法的力量,FRAP和FCS,研究
具有纳秒到毫秒时间分辨率的分子力动力学。最后,在目标3中,我们将利用荧光
偏振显微镜来测量分子力的3D方向。我们将使用成纤维细胞聚焦
粘附、血小板活化和凝血以及T细胞抗原识别来测试和验证我们的方法。
这些目标的实现将为理解分子力和产生分子动力学提供一个新的工具包。
力组织和动力学如何影响健康和疾病状态下的细胞功能的框架。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexa Lynn Mattheyses其他文献
Alexa Lynn Mattheyses的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexa Lynn Mattheyses', 18)}}的其他基金
Lightsheet Microscope for the UAB High-Resolution Imaging Facility
用于 UAB 高分辨率成像设备的光片显微镜
- 批准号:
10429045 - 财政年份:2022
- 资助金额:
$ 38.52万 - 项目类别:
Administrative Supplement: iLas Ring TIRF for 3D super-resolved imaging of cellular force magnitude and direction
行政补充:iLas Ring TIRF 用于细胞力大小和方向的 3D 超分辨成像
- 批准号:
10389532 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Molecular imaging technologies for mechanobiology
机械生物学分子成像技术
- 批准号:
10320359 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Administrative Supplement: Summer undergraduate research:Imaging the Molecular Forces Generated by Synthetic Motors
行政补充:暑期本科生研究:合成电机产生的分子力成像
- 批准号:
10393870 - 财政年份:2019
- 资助金额:
$ 38.52万 - 项目类别:
Visualizing Desmosome Structure and Dynamics by Polarized Fluorescence Microscopy
通过偏振荧光显微镜观察桥粒结构和动力学
- 批准号:
8773042 - 财政年份:2014
- 资助金额:
$ 38.52万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 38.52万 - 项目类别:
Research Grant