Limited Competition: Clinical Centers for Completion of Ongoing MFMU Network Protocols (UG1 Clinical Trial Optional)Activity Code
有限竞争:临床中心完成正在进行的 MFMU 网络协议(UG1 临床试验可选)活动代码
基本信息
- 批准号:10379322
- 负责人:
- 金额:$ 30.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAppointmentAreaBirthCOVID-19Cesarean sectionChildClinicalClinical TrialsCodeComputerized Medical RecordDataEnrollmentEnsureEthnic OriginFacultyFamilyFellowshipFetal GrowthFoundationsFundingFutureGuidelinesHealthHemorrhageHome visitationHospital AdministrationHospitalsHourHouse StaffsHypertensionIndividualInstitutionInstitutional Review BoardsLongterm Follow-upMaternal complicationMaternal-Fetal Medicine Units NetworkMeasuresMinority RecruitmentMothersNarcotic AbusesNewborn InfantParticipantPeer ReviewPerformancePersonsPregnancyPremature BirthProductivityProtocols documentationPublicationsPublishingRaceRandomizedRandomized Clinical TrialsResearchResearch PersonnelResearch TrainingRetrospective StudiesRiskScheduleSecondary toSiteSocietiesSystemTelephoneTexasTimeUnderrepresented MinorityUnited States National Institutes of HealthUniversitiesVisitadverse outcomebasecareer developmentclinical centerdata qualitydesigndisabilitydouble-blind placebo controlled trialethnic diversityexpectationexperiencefetalfollow-uphigh riskimprovedinfant morbiditymemberobstetric outcomesoffspringpandemic diseasepregnancy disorderprescription opioidpreventprospectiveracial diversityrecruitsecondary analysissocial mediatreatment effectuptake
项目摘要
Project Summary
Irrespective of whether the pregnancy is high- or low-risk, the national guidelines influencing the
management of upwards of 3.7 million births in the US annually are often based on retrospective data. Hence,
the need for prospectively collected data from multiple-centers or, whenever feasible, randomized clinical trials
(RCT), with unbiased treatment effect. For the last 19 years University of Texas-Houston (UTH) has been a
vital part of Maternal-Fetal Medicine Units (MFMU) Network to garner unbiased data.
The UTH research team consists of 11 people, with combined experience of 84 years conducting
research and over 100 years of working on labor and delivery. Prioritizing participation in the Network is
ingrained in our Division. Our Chair and the MFM Fellowship Director have both served as Network PI and
alternate PI. Within our Division we have a combined experience of being PI or alternate PI for 37 years. For
the current 4 RCT, out of the 12 Network centers, our recruitment of eligible people ranks between 1st and 4th
and, our ranking for the number of people randomized to these trials is between 2nd and 5th. The people we
recruit for the Network trials deliver at 3 hospitals, with upwards of 11,000 combined births annually. The
majority of the individuals we manage are racially and ethnically diverse, so over 85% of those recruited for the
ongoing MFMU studies are underrepresented minorities.
Our follow-up rates have been consistently greater 90%, except for the follow-up of ALPS children. We
have taken several measures to increase follow-up rates. We are attempting to contact the families after hours
or on weekends, offering Saturday appointments for study visits, and increasing our use of social media. We
continue to refine our strategies to optimize follow-up rates.
To be a valuable member of the Network, the center must have evidence of academic productivity.
Since, 2016, we have published over 260 peer-reviewed articles, which were congruent with the aims of the
MFMU Network. In the last 5 years, UTH faculty and Fellows have published 14 RCT, with 11 trials (78%)
being multi-centered. If the Network is to upend the national guidelines' reliance on retrospective studies,
centers must encourage and engage Fellows and junior faculty to undertake hypothesis generating secondary
analyses and RCT. Independent of the Network, we recently published 12 secondary analyses, and our MFM
Fellows are conducting 6 RCT, which do not compete with MFMU trials. It's notable that a nidus for the
upcoming Network trial—Prescription After Cesarean Trial—was an RCT published by a recent graduate of our
fellowship (Dinis J et al. Am J Obstet Gynecol. 2020).
We remain committed to ensuring proper conduct of the studies, maintaining our performance ranks in
the top-half of all aspects, including rate of eligible people randomized, follow-up and data quality merits.
项目摘要
无论怀孕是高风险还是低风险,
在美国,每年超过370万例新生儿的管理通常基于回顾性数据。因此,我们认为,
需要从多中心或(如可行)随机临床试验中前瞻性收集数据
(RCT)治疗效果无偏倚。在过去的19年里,德克萨斯大学休斯顿分校(UTH)一直是
母胎医学单位(MFMU)网络的重要组成部分,以获得公正的数据。
UTH研究团队由11人组成,拥有84年的研究经验,
研究和超过100年的劳动和交付的工作。优先参与网络是
在我们部门根深蒂固我们的主席和MFM奖学金主任都曾担任网络PI,
候补PI。在我们的部门内,我们有37年的PI或替代PI的综合经验。为
目前的4个RCT,在12个网络中心中,我们招募的合格人员排名在第1和第4位之间
我们对随机分配到这些试验中的人数的排名在第二和第五之间。The people we
该网络试验的招募人员在3家医院分娩,每年合并分娩超过11,000例。的
我们管理的大多数人都是种族和民族多元化的,因此超过85%的人被招募为
正在进行的MFMU研究是代表性不足的少数民族。
我们的随访率一直高于90%,除了ALPS儿童的随访。我们
已采取多项措施提高随访率。我们试图在下班后联系受害者家属
或者在周末,提供周六的研究访问预约,并增加我们对社交媒体的使用。我们
继续完善我们的战略,以优化随访率。
要成为网络的一个有价值的成员,该中心必须有学术生产力的证据。
自2016年以来,我们已经发表了260多篇同行评议的文章,这些文章与《世界卫生组织》的目标一致。
MFMU网络。在过去的5年里,UTH教师和研究员发表了14项RCT,其中11项试验(78%)
是多中心的。如果该网络要颠覆国家指南对回顾性研究的依赖,
中心必须鼓励和参与研究员和初级教师进行假设产生的次级
分析和RCT。独立于该网络,我们最近发表了12项二次分析,
研究员正在进行6项RCT,这些RCT不与MFMU试验竞争。值得注意的是
即将到来的网络试验-剖腹产后的处方试验-是一个随机对照试验,由我们的一个最近的毕业生发表。
Fellowship(Dinis J等人,Am J Obstet Gynecol. 2020年)。
我们会继续致力确保各项研究妥善进行,并维持我们在
前半部分的所有方面,包括合格的人随机化率,随访和数据质量的优点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suneet P Chauhan其他文献
Evidence-based surgery for cesarean hysterectomy secondary to placenta accreta spectrum: A systematic review
- DOI:
10.1016/j.ejogrb.2024.09.012 - 发表时间:
2024-11-01 - 期刊:
- 影响因子:
- 作者:
Allan Hung;Sebastian Z Ramos;Rachel Wiley;Kelsey Sawyer;Megha Gupta;Suneet P Chauhan;Uma Deshmukh;Scott Shainker;Amir Shamshirsaz;Stephen Wagner - 通讯作者:
Stephen Wagner
Suneet P Chauhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suneet P Chauhan', 18)}}的其他基金
Limited Competition: Clinical Centers for Completion of Ongoing MFMU Network Protocols (UG1 Clinical Trial Optional)Activity Code
有限竞争:临床中心完成正在进行的 MFMU 网络协议(UG1 临床试验可选)活动代码
- 批准号:
10253998 - 财政年份:2021
- 资助金额:
$ 30.3万 - 项目类别:
NICHD Maternal-Fetal Medicine Units (MFMU) Network
NICHD 母胎医学中心 (MFMU) 网络
- 批准号:
9910067 - 财政年份:2001
- 资助金额:
$ 30.3万 - 项目类别:
Eunice Kennedy Shriver NICHD Maternal Fetal Medicine Units Network
尤尼斯·肯尼迪·施赖弗 (Eunice Kennedy Shriver) NICHD 母胎医学单位网络
- 批准号:
8638045 - 财政年份:2001
- 资助金额:
$ 30.3万 - 项目类别:
相似海外基金
AI-powered digital healthcare platform that delivers health benefits to Bengali speakers in the UK through voice-driven remote medical triaging, appointment booking and self-care at home.
由人工智能驱动的数字医疗平台,通过语音驱动的远程医疗分类、预约和在家自我护理,为英国的孟加拉语使用者提供健康益处。
- 批准号:
10043942 - 财政年份:2022
- 资助金额:
$ 30.3万 - 项目类别:
Grant for R&D
An Innovative, Automated, Machine Learning Appointment, Logistics and Communication Platform for Mobile Service Provider SMEs that can incorporate
为移动服务提供商中小企业提供创新、自动化、机器学习预约、物流和通信平台,可将
- 批准号:
86195 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Collaborative R&D
Factors Promoting and Inhibiting the Appointment of Women in the Public Sector
促进和抑制妇女在公共部门任职的因素
- 批准号:
20H01456 - 财政年份:2020
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Primary Care Online Appointment Scheduling Platform for Emergency Departments: Improving the Care Transition between Emergency and Primary Care
急诊科初级保健在线预约安排平台:改善急诊和初级保健之间的护理过渡
- 批准号:
382187 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Operating Grants
Appointment of Supreme Court Justices and Formation of Judicial Precedents
最高法院法官的任命和判例的形成
- 批准号:
18K01395 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantitative network analysis of appointment diaries
预约日记的定量网络分析
- 批准号:
ES/R009236/1 - 财政年份:2018
- 资助金额:
$ 30.3万 - 项目类别:
Research Grant
A Study on the Process of Appointment of Principal by Physical Education Teachers and Formation of Management Competence
体育教师校长聘任过程与管理能力形成研究
- 批准号:
16K16538 - 财政年份:2016
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Reconstruction of the history of Japanese education through historical clarification of the transition between education at "daigaku" and appointment of government officials in ancient Japan
通过历史澄清古代日本“大学”教育与政府官员任用之间的转变,重建日本教育史
- 批准号:
15K17374 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Appointment Provisioning/Booking Platform
预约提供/预订平台
- 批准号:
486943-2015 - 财政年份:2015
- 资助金额:
$ 30.3万 - 项目类别:
Experience Awards (previously Industrial Undergraduate Student Research Awards)