Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
基本信息
- 批准号:10385256
- 负责人:
- 金额:$ 47.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AccountingAction PotentialsAddressAreaAutomationBiological AssayBiological SciencesCalciumCalibrationCardiotoxicityCell Culture TechniquesCellsCellular AssayCentral Nervous System DiseasesChemicalsComplementCustomData CompressionDetectionDeveloped CountriesDevelopmentDiseaseDisease modelDrug IndustryDrug ScreeningDrug TargetingElectronicsElectrophysiology (science)EpilepsyEvaluationFDA approvedFluorescenceHumanIndustryInfrastructureLaboratory cultureLasersLibrariesLifeLightLightingLiquid substanceMeasurementMeasuresMedicalMembraneMembrane PotentialsMicroscopeModelingNational Heart, Lung, and Blood InstituteNational Institute of Neurological Disorders and StrokeNeuronsNeurosciencesNeurosciences ResearchOpticsPainPain managementPerformancePharmacologyPhaseProceduresProcessProtein EngineeringProtocols documentationRattusReaderResolutionRunningScreening procedureSignal TransductionSmall Business Innovation Research GrantSodium ChannelSourceStimulusTechniquesTechnologyTestingTherapeuticTimeUnited StatesUnited States National Institutes of HealthVariantVisualizationWorkadvanced analyticsbasecell typechannel blockerschronic paincommercial applicationcommercializationdesigndrug candidatedrug developmentdrug discoveryhigh throughput screeningimprovedimproved functioninginduced pluripotent stem cell derived cardiomyocytesinhibitorinstrumentmultiplex assaynervous system disordernext generationnovelnovel therapeuticsoptogeneticspresynapticquasarresponsescreeningsensorsmall moleculesmall molecule inhibitorsmall molecule librariessuccesstherapeutic candidatetherapeutically effectivetoolvoltage
项目摘要
Project Summary:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
Neurological disorders remain a major unmet medical need in the United States and worldwide, accounting for
more than 10% of the total years of healthy life lost in developed countries. Drug discovery for diseases of the
nervous system has been challenging in comparison with other disease areas. A major barrier to progress in
neuroscience drug discovery is the lack of translatable assays, models, and technologies that can be used to
predict human efficacy with both the information content and throughput needed for rapid identification and
optimization of therapeutic candidates. As such, there is a strong commercial need for scalable assay and
instrument platforms that can be leveraged throughout the CNS-based drug screening and discovery pipeline.
The Swarm microscope, developed through Phase I and Phase II efforts, leverages Q-State’s proprietary
Optopatch technology, enabling the recording of both voltage and calcium activity under optical stimulation from
24-objectives simultaneously. Our instrument has the potential to transform high-throughput screening (HTS) by
leveraging our advanced optogenetics tools in 96-, 384-, and 1536-well plate formats. The instrument was
successfully used to screen Q-State’s 200,000 internal compound library against Nav1.7, a genetically validated
target for pain, on our Spiking HEK cell assay demonstrating the utility of the Swarm for CNS-based therapeutic
discovery.
In this Phase IIB application, Q-State will leverage these technologies and expertise towards full
commercialization by building the next generation Swarm 2.0 platform with significantly improved functionality,
throughput, and stability. First, we will develop a camera-based Swarm 2.0 instrument with upgraded illumination,
stimulation, and detection subassemblies and pair these capabilities with new analysis tools. Next, we will
develop two differentiating Swarm 2.0 compatible optogenetic classes of assays: 1) target-based HEK cell
assays for voltage-gated Na channels, representing a major class of drug targets for CNS disorders, and 2)
intact, native cell assays in neurons, enabling critical bridging secondary assays for therapeutic discovery. After
the instrument is constructed and validated, we will optimize Nav1.8, a drug target for pain indications currently
pursued by the pharmaceutical industry, and secondary multiplexed spiking HEK assays for HTS compatibility
on the platform. Finally, we will perform a screening campaign using an in-house library of approximately 200,000
small molecules for inhibitors of Nav1.8 followed by the hit confirmation and selectivity counter-screens. At the
conclusion of this Phase IIB work, the Swarm 2.0 platform will be fully validated for commercialization, generating
chemical hits that can be optimized for pain therapeutics and more broadly by enabling execution of HTS
compound screens with the potential for expansion into new assay types. Success in Phase IIB has the potential
for significant impact both in neuroscience research and in enabling our novel, proprietary platform for drug
discovery for CNS-based disorders such as severe epilepsy and pain, areas of significant unmet medical need.
项目概要:
用于药物发现的超高通量全光电生理酶标仪
神经系统疾病仍然是美国和世界范围内主要的未满足的医疗需求,
在发达国家,超过10%的健康寿命损失。药物发现的疾病
与其他疾病领域相比,神经系统一直具有挑战性。一个主要的进步障碍,
神经科学药物发现缺乏可翻译的分析,模型和技术,可用于
利用快速识别所需的信息内容和吞吐量预测人体功效,
治疗候选物的优化。因此,存在对可扩展的测定和分析的强烈商业需求。
仪器平台,可以利用整个基于CNS的药物筛选和发现管道。
通过第一阶段和第二阶段的努力开发的Swarm显微镜利用了Q-State的专有技术,
光贴技术,能够记录电压和钙活动的光刺激下,从
24-目标同时。我们的仪器有潜力通过以下方式改变高通量筛选(HTS):
利用我们先进的96孔、384孔和1536孔板形式的光遗传学工具。仪器
成功地用于筛选Q-State的200,000内部化合物库对Nav1.7,一个基因验证
在我们的Spiking HEK细胞试验中,用于疼痛的靶点,证明了Swarm用于基于CNS的治疗的实用性
的发现
在此IIB阶段的应用中,Q-State将充分利用这些技术和专业知识,
通过构建具有显著改进功能的下一代Swarm 2.0平台实现商业化,
吞吐量和稳定性。首先,我们将开发一种基于相机的Swarm 2.0仪器,它具有升级的照明,
刺激和检测,并将这些功能与新的分析工具相结合。接下来我们就
开发两种差异化Swarm 2.0兼容的光遗传学类别的测定:1)基于靶向的HEK细胞
电压门控Na通道的测定,代表CNS疾病的主要药物靶标类别,和2)
在神经元中进行完整的天然细胞测定,从而实现用于治疗发现的关键桥接二级测定。后
该仪器的构建和验证,我们将优化Nav1.8,目前疼痛适应症的药物靶点
以及用于HTS相容性的二级多重加标HEK测定
在平台上最后,我们将利用约20万个内部图书馆开展筛选活动
用于Nav1.8抑制剂的小分子,随后是命中确认和选择性反筛选。在
在第二阶段B的工作结束后,Swarm 2.0平台将得到充分的商业化验证,
化学命中,可以优化疼痛治疗,更广泛地说,通过执行HTS
化合物筛选具有扩展到新测定类型的潜力。IIB阶段的成功有可能
在神经科学研究和使我们的新的,专有的药物平台,
发现基于CNS的疾病,如严重癫痫和疼痛,这些领域的医疗需求严重未得到满足。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Thomas Dempsey其他文献
Graham Thomas Dempsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Thomas Dempsey', 18)}}的其他基金
Ultra-High-Throughput Plate Reader for Drug Discovery Using All-Optical Electrophysiology
使用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10704010 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10884080 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Scalable, all-optical assays of synaptic function and plasticity
突触功能和可塑性的可扩展、全光学测定
- 批准号:
9916820 - 财政年份:2017
- 资助金额:
$ 47.56万 - 项目类别:
Develop predictive human cardiomyocyte-based all optical assay for cardiotoxicity
开发基于人类心肌细胞的心脏毒性预测全光学测定法
- 批准号:
8832817 - 财政年份:2014
- 资助金额:
$ 47.56万 - 项目类别:
High-throughput, all-optical assay in human cardiomyoctes for clinically relevant prediction of drug induced cardiotoxity.
对人心肌细胞进行高通量全光学测定,用于药物引起的心脏毒性的临床相关预测。
- 批准号:
9247825 - 财政年份:2014
- 资助金额:
$ 47.56万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 47.56万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 47.56万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 47.56万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 47.56万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 47.56万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 47.56万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 47.56万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 47.56万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 47.56万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 47.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)