Ultra-High-Throughput Plate Reader for Drug Discovery Using All-Optical Electrophysiology
使用全光学电生理学进行药物发现的超高通量读板机
基本信息
- 批准号:10704010
- 负责人:
- 金额:$ 96.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AccountingAction PotentialsAddressAreaAutomationBiological AssayBiological SciencesCalciumCalibrationCardiotoxicityCell Culture TechniquesCellsCellular AssayCentral Nervous System DiseasesChemicalsCommercial gradeComplementCustomData CompressionDetectionDeveloped CountriesDevelopmentDiseaseDisease modelDrug IndustryDrug ScreeningDrug TargetingElectronicsElectrophysiology (science)EpilepsyEvaluationFDA approvedFluorescenceHumanIndustryInfrastructureLaboratory cultureLasersLibrariesLifeLightLightingLiquid substanceMeasurementMeasuresMedicalMembraneMembrane PotentialsMicroscopeModelingNational Institute of Neurological Disorders and StrokeNeuronsNeurosciencesNeurosciences ResearchOpticsPainPain managementPerformancePhaseProceduresProcessProtein EngineeringProtocols documentationRattusReaderResolutionRunningSCN1A proteinSCN2A proteinSCN8A geneScreening procedureSignal TransductionSmall Business Innovation Research GrantSodium ChannelSourceStimulusTechniquesTechnologyTestingTherapeuticTimeUnited StatesUnited States National Institutes of HealthVariantVisualizationWorkadvanced analyticscell typechannel blockerschronic paincommercial applicationcommercializationdesigndrug candidatedrug developmentdrug discoveryhigh throughput screeningimprovedinduced pluripotent stem cell derived cardiomyocytesinhibitorinstrumentmultiplex assaynervous system disorderneuronal excitabilitynext generationnovelnovel therapeuticsoptogeneticspharmacologicpresynapticresponsescreeningsensorsmall moleculesmall molecule inhibitorsmall molecule librariessuccesstherapeutic candidatetherapeutically effectivetoolvoltage
项目摘要
Project Summary:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
Neurological disorders remain a major unmet medical need in the United States and worldwide, accounting for
more than 10% of the total years of healthy life lost in developed countries. Drug discovery for diseases of the
nervous system has been challenging in comparison with other disease areas. A major barrier to progress in
neuroscience drug discovery is the lack of translatable assays, models, and technologies that can be used to
predict human efficacy with both the information content and throughput needed for rapid identification and
optimization of therapeutic candidates. As such, there is a strong commercial need for scalable assay and
instrument platforms that can be leveraged throughout the CNS-based drug screening and discovery pipeline.
The Swarm microscope, developed through Phase I and Phase II efforts, leverages Q-State’s proprietary
Optopatch technology, enabling the recording of both voltage and calcium activity under optical stimulation from
24-objectives simultaneously. Our instrument has the potential to transform high-throughput screening (HTS) by
leveraging our advanced optogenetics tools in 96-, 384-, and 1536-well plate formats. The instrument was
successfully used to screen Q-State’s 200,000 internal compound library against Nav1.7, a genetically validated
target for pain, on our Spiking HEK cell assay demonstrating the utility of the Swarm for CNS-based therapeutic
discovery.
In this Phase IIB application, Q-State will leverage these technologies and expertise towards full
commercialization by building the next generation Swarm 2.0 platform with significantly improved functionality,
throughput, and stability. First, we will develop a camera-based Swarm 2.0 instrument with upgraded illumination,
stimulation, and detection subassemblies and pair these capabilities with new analysis tools. Next, we will
develop two differentiating Swarm 2.0 compatible optogenetic classes of assays: 1) target-based HEK cell
assays for voltage-gated Na channels, representing a major class of drug targets for CNS disorders, and 2)
intact, native cell assays in neurons, enabling critical bridging secondary assays for therapeutic discovery. After
the instrument is constructed and validated, we will optimize Nav1.8, a drug target for pain indications currently
pursued by the pharmaceutical industry, and secondary multiplexed spiking HEK assays for HTS compatibility
on the platform. Finally, we will perform a screening campaign using an in-house library of approximately 200,000
small molecules for inhibitors of Nav1.8 followed by the hit confirmation and selectivity counter-screens. At the
conclusion of this Phase IIB work, the Swarm 2.0 platform will be fully validated for commercialization, generating
chemical hits that can be optimized for pain therapeutics and more broadly by enabling execution of HTS
compound screens with the potential for expansion into new assay types. Success in Phase IIB has the potential
for significant impact both in neuroscience research and in enabling our novel, proprietary platform for drug
discovery for CNS-based disorders such as severe epilepsy and pain, areas of significant unmet medical need.
项目总结:
一种用于药物发现的全光电生理超高通量平板阅读器
神经性疾病在美国和世界范围内仍然是一个主要的未得到满足的医疗需求,占
发达国家健康寿命损失总年数的10%以上。人类疾病的药物发现
与其他疾病领域相比,神经系统一直具有挑战性。取得进展的一个主要障碍
神经科学药物发现是缺乏可翻译的分析、模型和技术,可以用来
使用快速识别和处理所需的信息量和吞吐量来预测人类效能
优化治疗候选方案。因此,商业上对可伸缩化验和
可在整个基于中枢神经系统的药物筛选和发现流水线中利用的仪器平台。
通过第一阶段和第二阶段的努力开发的集群显微镜利用了Q-State的专有技术
光学匹配技术,能够记录光刺激下的电压和钙活动
24个目标同时实现。我们的仪器有可能通过以下方式转变高通量筛查(HTS)
利用我们先进的96孔板、384孔板和1536孔板格式的光遗传学工具。这台仪器是
成功用于Q-State的20万个内部化合物文库的筛选,对照基因验证的Nav1.7
疼痛的靶点,在我们的尖峰HEK细胞实验中证明了SERVER用于中枢神经系统治疗的有效性
发现号。
在这个IIB阶段的应用中,Q-State将充分利用这些技术和专业知识
通过构建具有显著改进的功能的下一代Sarm 2.0平台实现商业化,
吞吐量和稳定性。首先,我们将开发一款基于相机的、具有升级照明的Show2.0仪器,
刺激和检测组件,并将这些功能与新的分析工具配对。接下来,我们将
建立两种不同的Show2.0兼容的光遗传学检测方法:1)靶向HEK细胞
电压门控钠通道的检测,代表了中枢神经系统疾病的主要药物靶点,以及2)
完整、天然的神经元细胞分析,为治疗发现提供关键的二次分析桥梁。之后
该仪器已经构建和验证,我们将对目前用于疼痛适应症的药物靶点Nav1.8进行优化
制药业追求的,以及HTS兼容性的二次多路加样HEK检测
在站台上。最后,我们将使用约200,000个内部资料库执行筛选活动
用于Nav1.8抑制剂的小分子,然后是命中确认和选择性计数器屏幕。在
完成这项IIB阶段的工作后,Sarm 2.0平台将完全通过商业化验证,产生
化学点击,可针对疼痛治疗进行优化,更广泛地通过支持执行HTS来实现
具有扩展到新的化验类型的潜力的复合筛选。第二阶段的成功具有潜力
对神经科学研究和我们的新型专利药物平台产生重大影响
发现以中枢神经系统为基础的疾病,如严重癫痫和疼痛,这些领域是重大的未得到满足的医疗需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Thomas Dempsey其他文献
Graham Thomas Dempsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Thomas Dempsey', 18)}}的其他基金
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10385256 - 财政年份:2022
- 资助金额:
$ 96.2万 - 项目类别:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10884080 - 财政年份:2022
- 资助金额:
$ 96.2万 - 项目类别:
Scalable, all-optical assays of synaptic function and plasticity
突触功能和可塑性的可扩展、全光学测定
- 批准号:
9916820 - 财政年份:2017
- 资助金额:
$ 96.2万 - 项目类别:
Develop predictive human cardiomyocyte-based all optical assay for cardiotoxicity
开发基于人类心肌细胞的心脏毒性预测全光学测定法
- 批准号:
8832817 - 财政年份:2014
- 资助金额:
$ 96.2万 - 项目类别:
High-throughput, all-optical assay in human cardiomyoctes for clinically relevant prediction of drug induced cardiotoxity.
对人心肌细胞进行高通量全光学测定,用于药物引起的心脏毒性的临床相关预测。
- 批准号:
9247825 - 财政年份:2014
- 资助金额:
$ 96.2万 - 项目类别:
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 96.2万 - 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
- 批准号:
422915148 - 财政年份:2019
- 资助金额:
$ 96.2万 - 项目类别:
Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
- 批准号:
1752274 - 财政年份:2018
- 资助金额:
$ 96.2万 - 项目类别:
Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
- 批准号:
18H03539 - 财政年份:2018
- 资助金额:
$ 96.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
- 批准号:
9588470 - 财政年份:2018
- 资助金额:
$ 96.2万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10009724 - 财政年份:2018
- 资助金额:
$ 96.2万 - 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
- 批准号:
10467225 - 财政年份:2018
- 资助金额:
$ 96.2万 - 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
- 批准号:
9423398 - 财政年份:2017
- 资助金额:
$ 96.2万 - 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
- 批准号:
9357409 - 财政年份:2016
- 资助金额:
$ 96.2万 - 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
- 批准号:
16K07006 - 财政年份:2016
- 资助金额:
$ 96.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)