Develop predictive human cardiomyocyte-based all optical assay for cardiotoxicity
开发基于人类心肌细胞的心脏毒性预测全光学测定法
基本信息
- 批准号:8832817
- 负责人:
- 金额:$ 22.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-11-15 至 2015-05-14
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAdoptionAdverse effectsAwardBiological AssayCardiacCardiac MyocytesCardiotoxicityCellsChronicCommunitiesComputer softwareDevelopmentDrug CompoundingDrug Delivery SystemsElectrophysiology (science)Environmental HealthEvaluationFluorescenceFundingGene DeliveryGenesHealthcareHeartHumanIn VitroInstitutesLeadLightManualsMarketingMeasurementMeasuresMembraneMethodsModalityMolecularNational Institute of Neurological Disorders and StrokeNeuronsOpticsPatientsPharmaceutical PreparationsPhasePhototoxicityProductivityProtocols documentationPublic HealthReagentRegimenReporterResearchResolutionRiskSafetyServicesSignal TransductionSmall Business Innovation Research GrantSolutionsSpeedStagingStimulusSystemTechnologyTestingTherapeuticTimeTorsades de PointesUnited States Food and Drug AdministrationVariantVerapamilWithdrawalassay developmentbasecellular imagingcostdrug candidatedrug discoveryexperienceimaging Segmentationinduced pluripotent stem cellinnovative technologiesinstrumentinstrumentationmillisecondpatch clamppreventproduct developmentpromoterpublic health relevancescreeningsoftware systemssuccesstherapeutic developmenttooltraffickingvoltage
项目摘要
DESCRIPTION (provided by applicant): Develop predictive human cardiomyocyte-based all optical assay for cardiotoxicity. Cardiotoxicity is the leading cause of safety-driven withdrawal a all stages and limitation of drug compounds. The current cardiac safety paradigm nonclinical guidance ICH S7B focuses on in vitro hERG assays, which prove to be suboptimal in predicting a compound's cardiotoxicity in human. In the context of high cost and low productivity for new drug discovery, better cardiac safety evaluation becomes a significant public health issue. CSRC, HESI, and FDA are developing a new cardio safety paradigm: Comprehensive In vitro Proarrhythmia Assay (CiPA), which comprises characterizing electrophysiological effects of compounds in iPSC-derived human cardiomyocytes. Q-State's platform can probe electrophysiology of such cells with higher throughput, lower cost, and higher information content (multi-modalities: voltage, Ca2+, pH, and ATP) than current patch clamp assays, and with better temporal and spatial resolution and lower phototoxicity than other optical screening tools. Supported by a $680K NINDS SBIR Phase I award and angel funding, Q-State Biosciences is developing a proprietary turnkey instrument and software system (Optopatch) for simultaneous optical perturbation and optical measurement of membrane voltage in neurons. We propose to adapt Optopach for cardiomyocyte measurements and to develop and validate an Optopatch assay for drug-induced cardiotoxicity in human iPSC- derived cardiomyocytes. Aim 1. Molecular tools. Select the most effective actuators (converting blue light into electrical stimuli for pacing) and reporters (converting AP waveforms into near infrared fluorescence signals) by comparing promoters, trafficking motifs and gene delivery methods, and to thoroughly characterize the sensitivity, speed, photostability, and repeatability of the molecular tools. Aim 2. Instrumentation. Adapt Optopatch hardware and software to optically stimulate and record from > 1,000 cardiomyocytes simultaneously. Develop fluidics and environmental controls; modify software to support optical pacing, image segmentation, and calculation of cardiac-relevant AP parameters. Aim 3. Assay development and testing. Optimize assays for acute and chronic cardiotoxicity. Validate the assay by quantifying AP changes under a panel of drugs with known mechanisms and cardiac safety profiles. We will provide non-GLP cardiotoxicity screening services to drug discovery companies at the lead identification and optimization stages, supplementing, with the potential to eventually replace, hERG assays. We will also make Optopatch-cardio instrumentation and reagents available to the academic community; to enable mechanistic studies and broaden the applications of electrophysiology platform.
描述(由申请人提供):开发基于人类心肌细胞的预测心脏毒性的全光学测定法。心脏毒性是药物化合物所有阶段和限制的安全驱动戒断的主要原因。目前的心脏安全范例非临床指导 ICH S7B 侧重于体外 hERG 测定,事实证明,该测定在预测化合物对人体的心脏毒性方面效果不佳。在新药发现成本高、生产率低的背景下,更好的心脏安全性评估成为一个重要的公共卫生问题。 CSRC、HESI 和 FDA 正在开发一种新的心脏安全范例:综合体外致心律失常测定 (CiPA),其中包括表征化合物在 iPSC 衍生的人心肌细胞中的电生理效应。 Q-State 的平台可以比目前的膜片钳检测更高的通量、更低的成本和更高的信息内容(多模态:电压、Ca2+、pH 和 ATP)来探测此类细胞的电生理学,并且比其他光学筛选工具具有更好的时间和空间分辨率以及更低的光毒性。在 68 万美元的 NINDS SBIR 第一阶段奖项和天使资金的支持下,Q-State Biosciences 正在开发一种专有的统包仪器和软件系统 (Optopatch),用于同时对神经元膜电压进行光学扰动和光学测量。我们建议采用 Optopach 进行心肌细胞测量,并开发和验证 Optopatch 测定法,用于检测人 iPSC 衍生心肌细胞中药物引起的心脏毒性。目标 1. 分子工具。通过比较启动子、运输基序和基因传递方法,选择最有效的执行器(将蓝光转换为起搏的电刺激)和报告器(将 AP 波形转换为近红外荧光信号),并彻底表征分子工具的灵敏度、速度、光稳定性和可重复性。目标 2. 仪器仪表。采用 Optopatch 硬件和软件,同时对超过 1,000 个心肌细胞进行光学刺激和记录。开发流体和环境控制;修改软件以支持光学起搏、图像分割和心脏相关 AP 参数的计算。目标 3. 测定开发和测试。优化急性和慢性心脏毒性的测定。通过量化一组具有已知机制和心脏安全性的药物的 AP 变化来验证测定。我们将在先导化合物识别和优化阶段向药物发现公司提供非 GLP 心脏毒性筛选服务,补充并有可能最终取代 hERG 检测。我们还将向学术界提供 Optopatch-cardio 仪器和试剂;实现机理研究并拓宽电生理学平台的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Graham Thomas Dempsey其他文献
Graham Thomas Dempsey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Graham Thomas Dempsey', 18)}}的其他基金
Ultra-High-Throughput Plate Reader for Drug Discovery Using All-Optical Electrophysiology
使用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10704010 - 财政年份:2022
- 资助金额:
$ 22.17万 - 项目类别:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10385256 - 财政年份:2022
- 资助金额:
$ 22.17万 - 项目类别:
Ultra-high-throughput plate reader for drug discovery using all-optical electrophysiology
利用全光学电生理学进行药物发现的超高通量读板机
- 批准号:
10884080 - 财政年份:2022
- 资助金额:
$ 22.17万 - 项目类别:
Scalable, all-optical assays of synaptic function and plasticity
突触功能和可塑性的可扩展、全光学测定
- 批准号:
9916820 - 财政年份:2017
- 资助金额:
$ 22.17万 - 项目类别:
High-throughput, all-optical assay in human cardiomyoctes for clinically relevant prediction of drug induced cardiotoxity.
对人心肌细胞进行高通量全光学测定,用于药物引起的心脏毒性的临床相关预测。
- 批准号:
9247825 - 财政年份:2014
- 资助金额:
$ 22.17万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 22.17万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 22.17万 - 项目类别:
Operating Grants














{{item.name}}会员




