3D printed muscle-bone organ implant for treating large injuries

3D打印肌肉骨骼器官植入物用于治疗大面积损伤

基本信息

项目摘要

PROJECT SUMMARY In the United States, musculoskeletal diseases such as extremity injuries, burns, and tumors are a leading cause of disabilities and death, affecting one in two individuals. However, until now, there has been no effective implant that can replace the structure and function of damaged bone and muscle tissues, likely due to the difficulty of regulating the sophisticated heterogeneous bone-muscle junction structure. As a result, muscle damage has been largely ignored during musculoskeletal surgeries, which often results in disconnected tissues and fibrous tissue formation, leading to temporal or permanent musculoskeletal disability. In fact, in the human musculoskeletal system, there exists a direct attachment between bone and muscle tissues at a wide area of bone, forming a “bone-muscle unit.” Based on this structural closeness, the growth and development of bone and muscle are tightly coupled through growth factor signaling and cellular cross-talk. Therefore, damage to either bone or muscle can deteriorate health and function of the other tissue type. For this reason, there has been a strong need for developing an innovative musculoskeletal implant, which can integrate the distinguished physicochemical properties of hard tissue and soft tissue in a spatially controlled manner. To address this problem, we aim to design and build the first 3D printed muscle-bone implant, by utilizing state- of-the-art 3D multimaterial bioprinting that can extrude multiple types of tissue mimetic bioinks in a simultaneous and continuous manner. We will control the physicochemical properties of bioinks, such as viscosity and porosity, to provide an optimized artificial niche for the growth and differentiation of each cell type. We will also include biodegradable drug carriers to supply musculogenic and osteogenic growth factors with controlled release kinetic behavior, to aid tissue recovery. In addition, we will regulate the parameters for bioprinting, such as pneumatic pressure, and the injection and photocrosslinking conditions to build a 3D structure. We will then mature the 3D printed muscle-bone organ implant in a customized bioreactor system by applying compression and relaxation cycles that mimic musculoskeletal movement in vivo. Finally, we will evaluate the musculoskeletal regeneration capacity of our 3D printed muscle-bone implant in a mouse volumetric muscle loss and bone defect model. This research will present the first 3D print muscle-bone tissues with continuous structures ex vivo that can provide a groundbreaking clinical solution for curing severe musculoskeletal injuries and preventing disabilities in the clinic. We further expect that our 3D printed muscle-bone tissue platform will be beneficial for understanding developmental principles and pathological mechanisms of the musculoskeletal system.
项目摘要 在美国,肌肉骨骼疾病,如肢体损伤,烧伤和肿瘤是一个主要原因 残疾和死亡,影响到两个人中的一个。然而,直到现在,还没有有效的植入物 它可以替代受损骨骼和肌肉组织的结构和功能,这可能是由于 调节复杂的异质性骨-肌肉连接结构。因此,肌肉损伤 在肌肉骨骼手术中,这在很大程度上被忽视了,这通常会导致组织分离和纤维化。 组织形成,导致暂时或永久性肌肉骨骼残疾。事实上,在人类中, 在肌肉骨骼系统中,在广泛的骨和肌肉组织之间存在直接附着, 骨,形成“骨-肌肉单元”。基于这种结构上的紧密性,骨骼的生长和发育 和肌肉通过生长因子信号和细胞串扰紧密耦合。因此,损害 骨骼或肌肉中的任何一种都可能使另一种组织类型的健康和功能恶化。为此, 一直强烈需要开发一种创新的肌肉骨骼植入物, 以空间受控的方式测量硬组织和软组织的物理化学性质。 为了解决这个问题,我们的目标是设计和建立第一个3D打印肌肉骨骼植入物,通过利用状态- 最先进的3D多材料生物打印,可以同时挤出多种类型的组织模拟生物墨水。 连续的方式。我们将控制生物墨水的物理化学性质,如粘度和孔隙率, 为每种细胞类型的生长和分化提供优化的人工生态位。我们还将包括 提供具有控释动力学的肌生成和成骨生长因子的可生物降解的药物载体 行为,以帮助组织恢复。此外,我们将调整生物打印的参数,例如气动 压力以及注射和光交联条件来构建3D结构。然后我们将成熟的3D 通过施加压缩和松弛在定制的生物反应器系统中打印的肌肉-骨器官植入物 模拟体内肌肉骨骼运动的周期。最后,我们将评估肌肉骨骼再生 我们的3D打印肌肉-骨植入物在小鼠体积肌肉损失和骨缺损模型中的容量。这 研究将展示第一个3D打印的肌肉-骨骼组织,其具有体外连续结构,可以提供 开创性的临床解决方案,用于治疗严重的肌肉骨骼损伤和预防临床残疾。 我们进一步期望我们的3D打印肌肉-骨骼组织平台将有助于理解 肌肉骨骼系统的发育原理和病理机制。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanotherapeutic approaches to overcome distinct drug resistance barriers in models of breast cancer.
  • DOI:
    10.1515/nanoph-2021-0142
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    7.5
  • 作者:
    Saha T;Mondal J;Khiste S;Lusic H;Hu ZW;Jayabalan R;Hodgetts KJ;Jang H;Sengupta S;Eunice Lee S;Park Y;Lee LP;Goldman A
  • 通讯作者:
    Goldman A
Inhibition of Tunneling Nanotubes between Cancer Cell and the Endothelium Alters the Metastatic Phenotype.
An inexpensive "do-it-yourself" device for rapid generation of uniform tumor spheroids.
  • DOI:
    10.1016/j.device.2024.100255
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bumseok Namgung;Hongqing Dai;P. Vikraman;Tanmoy Saha;Shiladitya Sengupta;Hae Lin Jang
  • 通讯作者:
    Bumseok Namgung;Hongqing Dai;P. Vikraman;Tanmoy Saha;Shiladitya Sengupta;Hae Lin Jang
Human Nonalcoholic Steatohepatitis on a Chip.
  • DOI:
    10.1002/hep4.1647
  • 发表时间:
    2021-03
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Freag MS;Namgung B;Reyna Fernandez ME;Gherardi E;Sengupta S;Jang HL
  • 通讯作者:
    Jang HL
Template-Enabled Biofabrication of Thick 3D Tissues with Patterned Perfusable Macrochannels.
  • DOI:
    10.1002/adhm.202102123
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    10
  • 作者:
    Davoodi E;Montazerian H;Zhianmanesh M;Abbasgholizadeh R;Haghniaz R;Baidya A;Pourmohammadali H;Annabi N;Weiss PS;Toyserkani E;Khademhosseini A
  • 通讯作者:
    Khademhosseini A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehmet Remzi Dokmeci其他文献

Deciphering pericyte-induced temozolomide resistance in glioblastoma with a 3D microphysiological system mimicking the biomechanical properties of brain tissue
利用模拟脑组织生物力学特性的三维微生理系统破译胶质母细胞瘤中周细胞诱导的替莫唑胺耐药性
  • DOI:
    10.1016/j.actbio.2025.05.038
  • 发表时间:
    2025-06-15
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Surjendu Maity;Christopher Jewell;Can Yilgor;Satoru Kawakita;Saurabh Sharma;Alejandro Gomez;Marvin Mecwan;Natashya Falcone;Menekse Ermis;Mahsa Monirizad;Negar Hosseinzadeh Kouchehbaghi;Fatemeh Zehtabi;Danial Khorsandi;Mehmet Remzi Dokmeci;Diogo Moniz-Garcia;Alfredo Quiñones-Hinojosa;Ali Khademhosseini;Vadim Jucaud
  • 通讯作者:
    Vadim Jucaud

Mehmet Remzi Dokmeci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehmet Remzi Dokmeci', 18)}}的其他基金

3D printed muscle-bone organ implant for treating large injuries
3D打印肌肉骨骼器官植入物用于治疗大面积损伤
  • 批准号:
    10305697
  • 财政年份:
    2020
  • 资助金额:
    $ 41.79万
  • 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
  • 批准号:
    10249004
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:
Research Supplements to Promote Diversity
促进多样性的研究补充
  • 批准号:
    10281488
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:
Multifunctional dressing for treatment of diabetic wounds
治疗糖尿病伤口的多功能敷料
  • 批准号:
    10207665
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
  • 批准号:
    10472876
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:
Cardiotoxicity Assays on an Integrated Platform of a Heart-on-a-Chip and an Optical Immunosensor
芯片心脏和光学免疫传感器集成平台的心脏毒性测定
  • 批准号:
    10265584
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:
Multifunctional dressing for treatment of diabetic wounds
治疗糖尿病伤口的多功能敷料
  • 批准号:
    10136899
  • 财政年份:
    2018
  • 资助金额:
    $ 41.79万
  • 项目类别:

相似海外基金

Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
  • 批准号:
    22K13777
  • 财政年份:
    2022
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
  • 批准号:
    10045111
  • 财政年份:
    2022
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
  • 批准号:
    2749141
  • 财政年份:
    2022
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 41.79万
  • 项目类别:
    College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
  • 批准号:
    548945-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 41.79万
  • 项目类别:
    College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
  • 批准号:
    10801667
  • 财政年份:
    2019
  • 资助金额:
    $ 41.79万
  • 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1738138
  • 财政年份:
    2017
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
  • 批准号:
    17K18852
  • 财政年份:
    2017
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
  • 批准号:
    1612567
  • 财政年份:
    2016
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
  • 批准号:
    1621732
  • 财政年份:
    2016
  • 资助金额:
    $ 41.79万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了