Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
基本信息
- 批准号:10398908
- 负责人:
- 金额:$ 42.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse eventAlgorithmsAnestheticsAnticonvulsantsAwarenessBig DataBrainBrain InjuriesBrain hemorrhageCharacteristicsClinicalCollaborationsCommunitiesComputersCoupledCritical CareCritical IllnessDataData SetDetectionDevelopmentEarly InterventionElectroencephalogramElectroencephalographyEpidemicEventFrequenciesGoalsGrowthHourHumanIatrogenesisInjuryInterventionIntervention TrialIntracranial HemorrhagesLabelMedicalMedicineModelingMonitorNeurologicNeurological outcomeNeurologyNomenclaturePatient CarePatientsPatternPeriodicityPhenotypePhysiciansPositioning AttributeResearchResearch PersonnelSeizuresSepsisStandardizationSubclinical SeizuresSupervisionTelemetryTestingTimeTrainingUremiaVisualWorkaggressive therapybrain healthcausal modelclinical careclinical heterogeneityclinically actionableclinically significantcomputer sciencecostdeep learningdeep learning algorithmdisabilitydisability riskimprovedimproved outcomeintervention effectlarge datasetslearning strategynerve injuryneurophysiologyovertreatmentpredictive modelingpreventable deathreal time monitoringtool
项目摘要
Project Summary/Abstract: Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
Brain monitoring in critical care has grown dramatically over the past 20 years with the discovery that a large
proportion of ICU patients suffer from subclinical seizures and seizure-like electrical events, collectively called
“ictal-interictal-injury continuum abnormalities” (IIICAs), detectable only by electroencephalography (EEG). This
growth has created a crisis in critical care: It is clear that IIICAs damage the brain and cause permanent
neurologic disability. Yet detection of IIICAs by expert visual review is often delayed suggesting we need
better tools for real-time monitoring, to cope with the deluge of ICU EEG data. In other cases, IIICAs appear to
be harmless epiphenomena, and many worry that increased awareness of IIICAs has created an epidemic of
overly-aggressive prescribing of anticonvulsant drugs leading to preventable adverse events and costs. This
crisis highlights critical unmet needs for automated EEG monitoring for IIICAs, and a better understanding
of which types of IIICAs cause neural injury and warrant intervention.
Causes of IIICAs range widely, from primary brain injuries like hemorrhagic stroke and intracranial
hemorrhage, to systemic medical illnesses like sepsis and uremia. Until recently, this massive clinical
heterogeneity has been an insurmountable barrier to understanding the impact of IIICAs on neurologic
outcome. However, recent advances in deep learning, coupled with the unprecedented availability of a
massive dataset developed by our team over the last three years, makes it feasible for the first time to
systematically study the relationship between IIICAs and neurologic outcomes.
To meet the need for better monitoring tools and better models for understanding IIICAs, we will take a
deep learning approach to leverage the as-yet untapped information in a massive ICU EEG dataset. We will
pursue three Specific Aims: SA1: Comprehensively label all occurrences of IIICAs in a massive set of
cEEG recordings, thus preparing the EEG data for training computers to detect IIICA patterns; SA2: Develop
supervised DL algorithms to detect IIICAs as accurately as human experts, thus providing powerful tools
for both research on IIICAs and for clinical brain monitoring; SA3: Estimate the effect of IIICAs on
neurologic outcome: we will develop models to quantify effects of IIICAs on risk for disability after controlling
for inciting illness and other clinical factors, and to predict effects of interventions to suppress IIICAs.
This work will provide four crucial benefits to advance the field of precision critical care neurology, and by
extension, our ability to provide optimal neurologic care for patients during critical illness. 1) Improved
understanding of the clinical significance of seizure like IIICA states; 2) development of robust tools and
algorithms for critical care brain telemetry; 3) a unique, massive, publicly available, thoroughly annotated
dataset that will enable other researchers to further advance the field; and 4) a testable model that predicts
which types of cEEG abnormalities warrant aggressive treatment, setting the stage for interventional trials.
项目摘要/摘要:基于大数据和深度学习的间歇-间歇-损伤连续体研究
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brandon Westover其他文献
Michael Brandon Westover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brandon Westover', 18)}}的其他基金
Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10761842 - 财政年份:2023
- 资助金额:
$ 42.45万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10684096 - 财政年份:2022
- 资助金额:
$ 42.45万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10758996 - 财政年份:2022
- 资助金额:
$ 42.45万 - 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
- 批准号:
10372017 - 财政年份:2018
- 资助金额:
$ 42.45万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
9769180 - 财政年份:2018
- 资助金额:
$ 42.45万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8616877 - 财政年份:2014
- 资助金额:
$ 42.45万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
9313343 - 财政年份:2014
- 资助金额:
$ 42.45万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8908065 - 财政年份:2014
- 资助金额:
$ 42.45万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.45万 - 项目类别:
Research Grant














{{item.name}}会员




