Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality

数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物

基本信息

项目摘要

Abstract: Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality Sleep state signals encode critical biological information about brain and cardiovascular health. However, present approaches to polysomnography data (“sleep studies”) discard most of the collected information, instead providing, using visual analysis and rules from the 1960s, relatively unsophisticated metrics (e.g., 30-second sleep stages, apnea-hypopnea index). Visual scoring is also limited by interscorer inconsistencies. Recent advances in computational science and Machine Learning (ML) / Artificial Intelligence (AI) open the way for 1) standard scoring with unparalleled precision and consistency; 2) new data-driven, quantitative measures. There is a critical unmet need for new tools, algorithms and datasets that leverage recent advances in data science to develop robust sleep-based biomarkers of brain and cardiovascular health. We propose to create a Complete AI Sleep Report (CAISR) algorithm for all standard sleep measures, and a progressively accumulating library of novel analytics. We are ideally positioned to close this gap. We will assemble between our six collaborating institutions sleep data from >200K patients (35,000 already assembled), we have experience curating large clinical physiology and electronic medical records data for research; we have progress already underway with building a scalable public data sharing portal; we have deep expertise in basic and translational sleep science; and we have an established record of successfully developing and validating novel deep learning tools and algorithms to analyze sleep data. Our long-term goal is to increase the value of sleep physiology data by replacing manual analysis by open- source data-driven AI approaches. Our central hypothesis is that sleep signals carry measurable latent information about mortality and brain and heart health. Our specific aims are: 1) Create an online public portal with de-identified polysomnograms (PSG) and cross-sectional and longitudinal electronic health records (EHR) data for >200K adult and pediatric patients; 2) Implement CAISR and validated that it generalizes across age, sex, and race. CAISR will also be externally validated on >13,000 PSGs from public research cohorts; 3) Develop AI algorithms that a) differentiate patients with vs. without existing brain and heart disease; b) predict primary outcomes of all cause and cardiovascular mortality, and secondary outcomes of heart disease (coronary artery disease, myocardial infarction, congestive heart failure, atrial fibrillation, hypertension); and brain disease (dementia, stroke, intracranial hemorrhage). Completing these aims will lead to these expected outcomes: (1) sleep data across the lifespan, (2) sleep scoring AI algorithms validated across age, sex, and ethnicity; (3) predictors of mortality and brain and heart health. These outcomes will lead to new testable hypotheses, make sleep diagnostics more accessible to socially and biologically underserved groups, and stimulate progress in data-driven sleep research.
摘要:数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物 睡眠状态信号编码有关大脑和心血管健康的关键生物信息。然而, 目前的多导睡眠图数据方法(“睡眠研究”)丢弃了大部分收集到的信息,而是 使用 20 世纪 60 年代的视觉分析和规则提供相对简单的指标(例如 30 秒 睡眠阶段、呼吸暂停-呼吸不足指数)。视觉评分也受到评分者之间不一致的限制。最近的 计算科学和机器学习 (ML)/人工智能 (AI) 的进步为 1) 开辟了道路 具有无与伦比的精确度和一致性的标准评分; 2)新的数据驱动的定量措施。那里 对新工具、算法和数据集的关键未满足需求,这些工具、算法和数据集利用数据科学的最新进展来 开发基于睡眠的大脑和心血管健康的强大生物标志物。 我们建议为所有标准睡眠测量创建一个完整的人工智能睡眠报告(CAISR)算法,以及一个 不断积累的新颖分析库。我们处于缩小这一差距的理想位置。我们将 我们的六个合作机构收集了超过 20 万患者的睡眠数据(已收集了 35,000 名患者), 我们拥有整理大型临床生理学和电子病历数据以供研究的经验;我们有 构建可扩展的公共数据共享门户已经取得进展;我们在基础领域拥有深厚的专业知识 和转化睡眠科学;我们拥有成功开发和验证的既定记录 用于分析睡眠数据的新颖深度学习工具和算法。 我们的长期目标是通过开放式分析代替手动分析来提高睡眠生理学数据的价值。 源数据驱动的人工智能方法。我们的中心假设是睡眠信号携带可测量的潜在信号 有关死亡率以及大脑和心脏健康的信息。我们的具体目标是: 1)创建一个在线公共门户 具有去识别化的多导睡眠图 (PSG) 以及横截面和纵向电子健康记录 (EHR) >20 万成人和儿童患者的数据; 2) 实施 CAISR 并验证其适用于各个年龄段, 性别和种族。 CAISR 还将在来自公共研究队列的超过 13,000 个 PSG 上进行外部验证; 3)开发 人工智能算法 a) 区分患有和不患有脑部和心脏病的患者; b) 预测初级 全因死亡率和心血管死亡率的结果,以及心脏病的次要结果(冠状动脉 疾病、心肌梗塞、充血性心力衰竭、心房颤动、高血压);和脑部疾病 (痴呆、中风、颅内出血)。 完成这些目标将带来以下预期结果:(1) 整个生命周期的睡眠数据,(2) 睡眠评分 人工智能算法经过年龄、性别和种族验证; (3) 死亡率以及大脑和心脏健康的预测因素。 这些结果将带来新的可检验假设,使睡眠诊断更容易被社会和公众所接受。 生物学服务不足的群体,并刺激数据驱动的睡眠研究的进展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Brandon Westover其他文献

Michael Brandon Westover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Brandon Westover', 18)}}的其他基金

Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
  • 批准号:
    10761842
  • 财政年份:
    2023
  • 资助金额:
    $ 218.87万
  • 项目类别:
Investigation of Sleep
睡眠调查
  • 批准号:
    10761912
  • 财政年份:
    2023
  • 资助金额:
    $ 218.87万
  • 项目类别:
Establishing a Brain Health Index
建立大脑健康指数
  • 批准号:
    10761845
  • 财政年份:
    2023
  • 资助金额:
    $ 218.87万
  • 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
  • 批准号:
    10758996
  • 财政年份:
    2022
  • 资助金额:
    $ 218.87万
  • 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
  • 批准号:
    10398908
  • 财政年份:
    2018
  • 资助金额:
    $ 218.87万
  • 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
  • 批准号:
    10372017
  • 财政年份:
    2018
  • 资助金额:
    $ 218.87万
  • 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
  • 批准号:
    9769180
  • 财政年份:
    2018
  • 资助金额:
    $ 218.87万
  • 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
  • 批准号:
    8616877
  • 财政年份:
    2014
  • 资助金额:
    $ 218.87万
  • 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
  • 批准号:
    9313343
  • 财政年份:
    2014
  • 资助金额:
    $ 218.87万
  • 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
  • 批准号:
    8908065
  • 财政年份:
    2014
  • 资助金额:
    $ 218.87万
  • 项目类别:

相似海外基金

Developing a Young Adult-Mediated Intervention to Increase Colorectal Cancer Screening among Rural Screening Age-Eligible Adults
制定年轻人介导的干预措施,以增加农村符合筛查年龄的成年人的结直肠癌筛查
  • 批准号:
    10653464
  • 财政年份:
    2023
  • 资助金额:
    $ 218.87万
  • 项目类别:
Doctoral Dissertation Research: Estimating adult age-at-death from the pelvis
博士论文研究:从骨盆估算成人死亡年龄
  • 批准号:
    2316108
  • 财政年份:
    2023
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Standard Grant
Determining age dependent factors driving COVID-19 disease severity using experimental human paediatric and adult models of SARS-CoV-2 infection
使用 SARS-CoV-2 感染的实验性人类儿童和成人模型确定导致 COVID-19 疾病严重程度的年龄依赖因素
  • 批准号:
    BB/V006738/1
  • 财政年份:
    2020
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Research Grant
Transplantation of Adult, Tissue-Specific RPE Stem Cells for Non-exudative Age-related macular degeneration (AMD)
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 (AMD)
  • 批准号:
    10294664
  • 财政年份:
    2020
  • 资助金额:
    $ 218.87万
  • 项目类别:
Sex differences in the effect of age on episodic memory-related brain function across the adult lifespan
年龄对成人一生中情景记忆相关脑功能影响的性别差异
  • 批准号:
    422882
  • 财政年份:
    2019
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Operating Grants
Modelling Age- and Sex-related Changes in Gait Coordination Strategies in a Healthy Adult Population Using Principal Component Analysis
使用主成分分析对健康成年人群步态协调策略中与年龄和性别相关的变化进行建模
  • 批准号:
    430871
  • 财政年份:
    2019
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Studentship Programs
Transplantation of Adult, Tissue-Specific RPE Stem Cells as Therapy for Non-exudative Age-Related Macular Degeneration AMD
成人组织特异性 RPE 干细胞移植治疗非渗出性年龄相关性黄斑变性 AMD
  • 批准号:
    9811094
  • 财政年份:
    2019
  • 资助金额:
    $ 218.87万
  • 项目类别:
Study of pathogenic mechanism of age-dependent chromosome translocation in adult acute lymphoblastic leukemia
成人急性淋巴细胞白血病年龄依赖性染色体易位发病机制研究
  • 批准号:
    18K16103
  • 财政年份:
    2018
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Doctoral Dissertation Research: Literacy Effects on Language Acquisition and Sentence Processing in Adult L1 and School-Age Heritage Speakers of Spanish
博士论文研究:识字对西班牙语成人母语和学龄传统使用者语言习得和句子处理的影响
  • 批准号:
    1823881
  • 财政年份:
    2018
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Standard Grant
Adult Age-differences in Auditory Selective Attention: The Interplay of Norepinephrine and Rhythmic Neural Activity
成人听觉选择性注意的年龄差异:去甲肾上腺素与节律神经活动的相互作用
  • 批准号:
    369385245
  • 财政年份:
    2017
  • 资助金额:
    $ 218.87万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了