Establishing a Brain Health Index
建立大脑健康指数
基本信息
- 批准号:10761845
- 负责人:
- 金额:$ 86.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-07 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Project Abstract: Polysomnographic Biomarkers of Brain Aging
Although cognitive decline is a “normal” part of aging, some individuals clearly age better than others.
However, the concept of differential aging has been minimally studied for the brain.
Electroencephalogram (EEG) oscillations signals carry rich information regarding brain health and brain aging.
Alzheimer’s disease (AD) is associated with fragmented sleep and altered sleep oscillations. Clearance of
cerebral beta amyloid through the brain's glymphatic drainage system occurs mainly in non-rapid eye
movement (NREM) sleep, and depends on EEG slow oscillations. Cortical generators of sleep EEG
oscillations overlap with regions of cortical thinning and loss of functional connectivity in AD. Disturbances of
NREM disrupt memory consolidation. Finally, deficient REM sleep contributes to dementia. These observations
suggest that brain health may be measurable from information contained in the sleep EEG.
In preliminary work we have developed EEG-brain age – a machine learning model that predicts a patient’s
age based on patterns of overnight sleeping EEG oscillations. This allows prediction of age with a precision of
+/- 7 years. Our preliminary data suggest diabetes and hypertension, chronic HIV infection, an MCI or AD are
reflected in the EEG as excessive brain age, and that excessive brain age is independently associated with
reduced life expectancy.
Our central hypothesis is that sleep physiology data can provide sensitive and specific biomarkers of brain
health. This hypothesis is based on our prior work showing that BAI is elevated in several clinical populations.
BAI can be accurately calculated using frontal EEG signals, making it suitable for implementation on at-home
EEG devices. The rationale for the proposed research is that validating sleep EEG-derived biomarkers as
measures of brain health at the level of individual patients would lay the ground for use in clinical trials and
patient care. We plan to accomplish the central objective by pursuing two complementary aims. In Aim 1, we
will take a hypothesis-driven approach, and test for associations of specific sleep features with specific
cognitive deficits and specific structural pathology. In Aim 2, we will take ad data-driven approach, and develop
optimized biomarkers of brain health using a novel form of machine learning known as multitask learning,
which combine multiple features of sleep – including conventional features, as well as data-driven features
directly learned from the data – to predict or “explain” variation in cognitive performance and in structural brain
MRI measures that are indicative of brain health or disease. The project will take advantage of a large and
diverse set of sleep data (>33,000 patients), as well as thousands of brain MRI an cognitive testing results.
At the conclusion of this study, we expect to have a better understanding of the role sleep oscillations play in
brain health, and clinically useful brain health biomarkers. These outcomes will aid development of
interventions to promote brain health.
项目摘要:脑老化的多导睡眠生物标志物
虽然认知能力下降是衰老的一个“正常”部分,但有些人显然比其他人衰老得更好。
然而,差异老化的概念在大脑中的研究很少。
脑电图(EEG)振荡信号携带着丰富的关于大脑健康和大脑衰老的信息。
阿尔茨海默病(AD)与睡眠片段化和睡眠振荡改变有关。清除
大脑β淀粉样蛋白通过大脑的胶质淋巴引流系统主要发生在非快速眼
运动(NREM)睡眠,并依赖于EEG慢振荡。睡眠脑电皮层发生器
振荡与AD中皮质变薄和功能连接丧失的区域重叠。紊乱
非快速眼动扰乱记忆巩固。最后,REM睡眠不足会导致痴呆症。这些观察结果
表明大脑健康可以从睡眠EEG中包含的信息中测量。
在初步工作中,我们开发了EEG-大脑年龄-一种预测患者年龄的机器学习模型。
年龄基于夜间睡眠EEG振荡的模式。这使得预测年龄的精度
+/- 7年。我们的初步数据表明,糖尿病和高血压,慢性HIV感染,MCI或AD是
反映在脑电图过度的大脑年龄,而过度的大脑年龄是独立相关的,
预期寿命缩短。
我们的中心假设是,睡眠生理学数据可以提供敏感和特异的大脑生物标志物,
健康这一假设是基于我们先前的工作,表明BAI在几个临床人群中升高。
BAI可以使用额叶EEG信号准确计算,使其适合在家中实施
脑电图仪这项研究的基本原理是,验证睡眠脑电图衍生的生物标志物,
在个体患者水平上测量大脑健康将为临床试验奠定基础,
病人护理我们计划通过追求两个相辅相成的目标来实现中心目标。目标1:
将采取假设驱动的方法,并测试特定睡眠特征与特定
认知缺陷和特定的结构病理学。在目标2中,我们将采取广告数据驱动的方法,并开发
使用称为多任务学习的新型机器学习形式优化大脑健康的生物标志物,
其结合了联合收割机的多种睡眠特征-包括常规特征以及数据驱动特征
直接从数据中学习-预测或“解释”认知表现和大脑结构的变化
MRI测量表明大脑健康或疾病。该项目将利用一个大型和
这些数据来自不同的睡眠数据集(> 33,000名患者),以及数千份大脑MRI和认知测试结果。
在这项研究的结论,我们希望有一个更好的了解睡眠振荡的作用,
脑健康和临床上有用的脑健康生物标志物。这些成果将有助于发展
促进大脑健康的干预措施。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Measuring expertise in identifying interictal epileptiform discharges.
- DOI:10.1684/epd.2021.1409
- 发表时间:2022-06-01
- 期刊:
- 影响因子:2.3
- 作者:Harid, Nitish M;Jing, Jin;Hogan, Jacob;Nascimento, Fabio A;Ouyang, An;Zheng, Wei-Long;Ge, Wendong;Zafar, Sahar F;Kim, Jennifer A;Alice, D Lam;Herlopian, Aline;Maus, Douglas;Karakis, Ioannis;Ng, Marcus;Hong, Shenda;Yu, Zhu;Kaplan, Peter W;Cash, Sydney;Shafi, Mouhsin;Martz, Gabriel;Halford, Jonathan J;Westover, Michael Brandon
- 通讯作者:Westover, Michael Brandon
Automated Extraction of Stroke Severity from Unstructured Electronic Health Records using Natural Language Processing.
使用自然语言处理从非结构化电子健康记录中自动提取中风严重程度。
- DOI:10.1101/2024.03.08.24304011
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Fernandes,Marta;Westover,MBrandon;Singhal,AneeshB;Zafar,SaharF
- 通讯作者:Zafar,SaharF
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Brandon Westover其他文献
Michael Brandon Westover的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Brandon Westover', 18)}}的其他基金
Big Data and Deep Learning for the Interictal-Ictal-Injury Contiuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10761842 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10684096 - 财政年份:2022
- 资助金额:
$ 86.28万 - 项目类别:
Data-Driven Sleep Biomarkers of Brain Health, Heart Health, and Mortality
数据驱动的大脑健康、心脏健康和死亡率的睡眠生物标志物
- 批准号:
10758996 - 财政年份:2022
- 资助金额:
$ 86.28万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
10398908 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Investigation of Sleep in the Intensive Care Unit (ICU-SLEEP)
重症监护病房睡眠调查(ICU-SLEEP)
- 批准号:
10372017 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Big Data and Deep Learning for the Interictal-Ictal-Injury Continuum
发作间期-发作期-损伤连续体的大数据和深度学习
- 批准号:
9769180 - 财政年份:2018
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8616877 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
9313343 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
Quantitative Monitoring and Control of Sedation and Pain in the ICU Environment
ICU 环境中镇静和疼痛的定量监测和控制
- 批准号:
8908065 - 财政年份:2014
- 资助金额:
$ 86.28万 - 项目类别:
相似国自然基金
Sitagliptin通过microbiota-gut-brain轴在2型糖尿病致阿尔茨海默样变中的脑保护作用机制
- 批准号:81801389
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
平扫描数据导引的超低剂量Brain-PCT成像新方法研究
- 批准号:81101046
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mobilizing brain health and dementia guidelines for practical information and a well trained workforce with cultural competencies - the BRAID Hub - Brain health Resources And Integrated Diversity Hub
动员大脑健康和痴呆症指南获取实用信息和训练有素、具有文化能力的劳动力 - BRAID 中心 - 大脑健康资源和综合多样性中心
- 批准号:
498289 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
How food speaks to you: A new brain-gut axis for lifelong health.
食物如何与你对话:终身健康的新脑肠轴。
- 批准号:
BB/X015106/1 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
Research Grant
EBRAINS 2.0: A Research Infrastructure to Advance Neuroscience and Brain Health
EBRAINS 2.0:推进神经科学和大脑健康的研究基础设施
- 批准号:
10106074 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
EU-Funded
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
Promoting equitable and inclusive access to research findings: Brain Health and Cognitive Impairment in Aging (BHCIA) Knowledge Mobilization (KM) Hub
促进公平和包容性地获取研究成果:大脑健康和老龄化认知障碍 (BHCIA) 知识动员 (KM) 中心
- 批准号:
498218 - 财政年份:2024
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
Community Connectedness for HIV and Brain Health: A Hybrid Café to Share Knowledge on HIV, Aging, and Cognition
艾滋病毒和大脑健康的社区联系:一家分享艾滋病毒、衰老和认知知识的混合咖啡馆
- 批准号:
485616 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Miscellaneous Programs
Brain Resilience and Diversity in Aging and Dementia: A collaboratory for promoting equity in brain health research
衰老和痴呆症中的大脑弹性和多样性:促进大脑健康研究公平的合作实验室
- 批准号:
492344 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
Who is Caring for the Caregiver? Understanding Quality of Life and Mental Health Outcomes in Caregivers of Persons with Brain Injury
谁在照顾看护者?
- 批准号:
492369 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants
Helping Women with Diabetes Quit Smoking: A Gender-Informed Approach to Brain Health
帮助患有糖尿病的女性戒烟:一种基于性别的大脑健康方法
- 批准号:
492331 - 财政年份:2023
- 资助金额:
$ 86.28万 - 项目类别:
Operating Grants














{{item.name}}会员




