Methods for Evolutionary Genomics Analysis
进化基因组学分析方法
基本信息
- 批准号:10405153
- 负责人:
- 金额:$ 13.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdministrative SupplementBioinformaticsBiologyCloud ComputingCodeCommunicationCommunitiesComputational BiologyComputer AnalysisComputer softwareCost efficiencyDNA SequenceDataData AnalysesData SetDependenceDevelopmentDockingEnvironmentEvolutionFundingFutureGenesGeneticGenomic SegmentGenomicsGrantHigh Performance ComputingHumanInfrastructureInvestigationLanguageLearningLifeMaintenanceMemoryMethodsModernizationModificationMolecularMolecular AnalysisOrganismOutputParentsPeer ReviewPerformanceRNA SequencesReadinessRegistriesResearchResearch PersonnelResearch Project GrantsResourcesRunningSequence AlignmentSequence AnalysisSoftware EngineeringSoftware ToolsSource CodeTestingTimeTreesUnited States National Institutes of HealthUpdatecluster computingcomparativecomputer clusterdata exchangedata formatdesignfunctional genomicsgenetic analysisgenome sequencinggenomic datahigh throughput analysisimprovedinteroperabilitylarge datasetsmachine learning methodnext generation sequencingparent grantpathogentoolusability
项目摘要
PROJECT SUMMARY
This administrative supplement request aims to develop a cloud-enabled, highly scalable version of the
computational core of the Molecular Evolutionary Genetics Analysis software (MEGA-CC:
www.megasoftware.net). The development of MEGA-CC is a significant component of the NIH-funded
research project to develop machine learning methods and tools for comparative analysis of molecular
sequences.
With big advances in genome sequencing, researchers are assembling datasets containing large numbers of
species, strains, genes, and genomic segments. Phylogenomic analyses of these data are essential to
understanding the dynamics of evolutionary change of pathogens, humans, and species across the tree of life.
Machine learning methods and software tools for phylogenomics are now necessary because the expanding
size of phylogenomic datasets limits the practical utility of currently available methods and tools due to
excessive computational time and memory requirements. One component of the funded grant is implementing
our new machine learning methods in the MEGA software suite (www.megasoftware.net), an extremely
popular bioinformatics software (>20,000 peer-reviewed citations and 350,000 software downloads in the year
2020 alone). The MEGA software includes a large repertoire of tools for assembling sequence alignments,
inferring evolutionary trees, estimating genetic distances and diversities, inferring ancestral sequences,
computing timetrees, and testing selection. These analyses are now required in all research investigations and
fields in which multiple DNA or RNA sequences are used.
However, MEGA and its computational core (MEGA-CC) are not optimized for distribution and execution on
cloud infrastructure and high-performance computing clusters. This supplement to the funded grant will enable
us to advance MEGA for cloud readiness to harness the scalability, elastic computing power, and easy
software upgrade and maintenance enabled by cloud infrastructure (MEGA-CR). It will also make MEGA
interoperable with existing and future cloud infrastructure. Additionally, this supplement will facilitate using the
new machine learning methods in MEGA with big genomic data in practice, thus addressing an imminent and
fast-growing need for an increasingly larger community of researchers using MEGA. MEGA-CR will increase
the usability of MEGA for the scientific community analyzing very large datasets for which greater accessibility,
cost-efficiency, and scalability of cloud-readiness is becoming crucial.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudhir Kumar其他文献
Sudhir Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudhir Kumar', 18)}}的其他基金
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
10159969 - 财政年份:2020
- 资助金额:
$ 13.87万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
9981255 - 财政年份:2020
- 资助金额:
$ 13.87万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
10558612 - 财政年份:2020
- 资助金额:
$ 13.87万 - 项目类别:
Computational Methods for Expression Image Analysis
表达图像分析的计算方法
- 批准号:
8318902 - 财政年份:2011
- 资助金额:
$ 13.87万 - 项目类别:
Computational Methods for Expression Image Analysis
表达图像分析的计算方法
- 批准号:
8051993 - 财政年份:2011
- 资助金额:
$ 13.87万 - 项目类别:
相似海外基金
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 13.87万 - 项目类别:














{{item.name}}会员




