Methods for Evolutionary Genomics Analysis
进化基因组学分析方法
基本信息
- 批准号:10322021
- 负责人:
- 金额:$ 49.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AddressBenchmarkingBig Data MethodsBiologicalCategoriesComplementComputer softwareData AnalysesData SetDevelopmentGene ProteinsGenesGenomic SegmentGenomicsGoalsLibrariesLifeMachine LearningMemoryMethodsModelingMolecular AnalysisMolecular EvolutionNucleotidesPatternPerformancePhylogenetic AnalysisReproducibilityResearchSignal TransductionTechniquesTimeTreesbasecomparativefunctional genomicsgenomic locusgraphical user interfaceimprovedinnovationinterestlarge scale dataprogramstooltrait
项目摘要
Summary/Abstract
Continuing advances in nucleotide sequencing have resulted in the assembly of datasets containing large
numbers of species, genes, and genomic segments. Phylogenomic analyses of these data are essential to
progress in understanding evolutionary patterns across the tree of life, and are finding increasing numbers of
applications in practical analyses that require understanding of how patterns change over time. The sheer size
of phylogenomic datasets limits the practical utility of available methods due to excessive time and memory
requirements. We have developed many high impact methods and tools for comparative analysis of molecular
sequences, a tradition we propose to continue through this MIRA project by developing innovative methods that
address new challenges in phylogenomics. We will focus on pattern-based approaches of machine learning with
sparsity constraint (SL) applied to phylogenomics, as a complement to traditional model-based methods in
molecular evolution and phylogenetics. In the proposed SL in Phylogenomics (SLiP) framework, we will build
models that best explain the biological trait or evolutionary hypothesis of interest, with genomic loci, such as
genes, proteins, and genomic segments, serving as model parameters. Preliminary results from two example
applications establish the premise and promise of a general SLiP framework. In one, SLiP successfully detected
loci whose inclusion in a phylogenomic dataset overtakes a consistent and contrasting signal from hundreds of
other loci when inferring phylogenetic relationships. In the other example, SLiP revealed loci and biological
functional categories that harbor convergent sequence evolutionary patterns associated with the emergence of
the same trait in distinct evolutionary lineages. In all of these analyses, SLiP required only a small fraction of the
computational time and memory demanded by traditional methods, and it enabled better evolutionary contrasts
with fewer assumptions. Consequently, the successful development of SLiP will improve the feasibility, rigor,
and reproducibility of large-scale data analysis. It will also democratize big data analytics via shortened analysis
time and a relatively small memory footprint, and encourage the development of a new class of methods for
phylogenomic analysis. This framework will be accessed from a free library of SLiP functions, which will be
directly useable via command line and available in a graphical interface through integration with the MEGA
software.
摘要/摘要
核苷酸测序的不断进步已经导致包含大量数据的数据集的组装
物种、基因和基因组片段的数量。这些数据的系统发育分析对于
在理解整个生命树的进化模式方面取得了进展,并且发现越来越多的
实际分析中的应用需要了解模式如何随时间变化。绝对的尺寸
由于过多的时间和内存,系统发育组数据集的数量限制了可用方法的实际效用
要求。我们开发了许多高影响力的方法和工具,用于分子的比较分析
序列,我们建议通过开发创新方法在 MIRA 项目中延续这一传统
应对系统基因组学的新挑战。我们将重点关注基于模式的机器学习方法
稀疏约束(SL)应用于系统基因组学,作为传统基于模型的方法的补充
分子进化和系统发育学。在拟议的 SL 系统基因组学 (SLiP) 框架中,我们将构建
最能解释感兴趣的生物特征或进化假设的模型,具有基因组位点,例如
基因、蛋白质和基因组片段,作为模型参数。两个例子的初步结果
应用程序建立了通用 SLiP 框架的前提和承诺。其中,SLiP成功检测到
系统发育数据集中包含的位点超过了来自数百个的一致且对比的信号
推断系统发育关系时的其他基因座。在另一个例子中,SLiP 揭示了基因座和生物学
具有与出现相关的趋同序列进化模式的功能类别
不同进化谱系中的相同特征。在所有这些分析中,SLiP 仅需要一小部分
传统方法所需的计算时间和内存,并且它实现了更好的进化对比
假设较少。因此,SLiP的成功开发将提高其可行性、严谨性、
和大规模数据分析的再现性。它还将通过缩短分析使大数据分析民主化
时间和相对较小的内存占用,并鼓励开发一类新的方法
系统发育分析。该框架可以从免费的 SLiP 函数库访问,该库将是
可通过命令行直接使用,并通过与 MEGA 集成在图形界面中使用
软件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sudhir Kumar其他文献
Sudhir Kumar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sudhir Kumar', 18)}}的其他基金
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
10159969 - 财政年份:2020
- 资助金额:
$ 49.53万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
9981255 - 财政年份:2020
- 资助金额:
$ 49.53万 - 项目类别:
Bioinformatics of metastatic migration histories
转移迁移历史的生物信息学
- 批准号:
10558612 - 财政年份:2020
- 资助金额:
$ 49.53万 - 项目类别:
Computational Methods for Expression Image Analysis
表达图像分析的计算方法
- 批准号:
8318902 - 财政年份:2011
- 资助金额:
$ 49.53万 - 项目类别:
Computational Methods for Expression Image Analysis
表达图像分析的计算方法
- 批准号:
8051993 - 财政年份:2011
- 资助金额:
$ 49.53万 - 项目类别:
相似国自然基金
企业绩效评价的DEA-Benchmarking方法及动态博弈研究
- 批准号:70571028
- 批准年份:2005
- 资助金额:16.5 万元
- 项目类别:面上项目
相似海外基金
An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
- 批准号:
10100319 - 财政年份:2024
- 资助金额:
$ 49.53万 - 项目类别:
Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
- 批准号:
2796588 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
- 批准号:
2311716 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
- 批准号:
2892813 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
- 批准号:
2347024 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233969 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
- 批准号:
2311733 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
- 批准号:
10662975 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
- 批准号:
2233968 - 财政年份:2023
- 资助金额:
$ 49.53万 - 项目类别:
Continuing Grant














{{item.name}}会员




