Transplantable Micro-Tissue Engineered Neural Networks to Restore the Nigrostriatal Pathway in Parkinson's Disease
可移植微组织工程神经网络恢复帕金森病的黑质纹状体通路
基本信息
- 批准号:10403480
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectArchitectureAxonBehavioralBrainCharacteristicsClinicalClinical TreatmentCorpus striatum structureCustomDeafferentation procedureDeep Brain StimulationDisease modelDopamineElectrophysiology (science)EmbryoEngineeringFamily suidaeFetal Tissue TransplantationFutureGenerationsHealthHistologicHumanHydrogelsImageImplantIn VitroLeftMaintenanceMedical centerMicroinjectionsModelingMotorNerve DegenerationNervous System TraumaNervous system structureNeuroanatomyNeurodegenerative DisordersNeuronsOutcomeParkinson DiseasePathway interactionsPatientsPennsylvaniaPhenotypePhiladelphiaPopulationProcessRattusRegenerative MedicineRodentRodent ModelStructureSubstantia nigra structureSymptomsSynapsesSystemTechniquesTechnologyTestingTissue EngineeringTissuesTransplantationUniversitiesVeteransWorkbasebrain circuitryclinical translationconnectomedopaminergic neuronhuman adult stem cellhuman stem cellsimplantationin vivo Modelmotor deficitmotor symptommultidisciplinaryneural networkneuronal replacementneuronal survivalnigrostriatal dopaminergic pathwaynigrostriatal pathwaynoveloptogeneticspars compactaporcine modelreconstructionrepairedrestorationstem cell biologystem cell derived tissuesstem cellstreatment strategy
项目摘要
ABSTRACT
Parkinson's disease (PD) is a progressive neurodegenerative disease that affects 1-2% of people over 65. The
classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia
nigra pars compacta (SNpc), resulting in a loss of their long-projecting axonal inputs to the striatum. Current
treatment strategies [e.g., dopamine replacement, deep brain stimulation (DBS)] can only minimize the
symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Therefore, we propose a novel
regenerative medicine solution, whereby custom-built micro-tissue engineered neural networks (TENNs) are
transplanted to physically replace the axonal connections from the SNpc to the striatum. Specifically, micro-
TENNs will be transplanted in rodent and porcine models of PD to directly replace SNpc neurons, restore
axonal inputs to the striatum, and ameliorate motor deficits. Our overarching hypothesis is that preformed
micro-TENNs comprised of dopaminergic neurons and long-projecting axonal tracts will survive, synaptically
integrate, and thereby physically reconstruct the nigrostriatal pathway to restore motor function in models of
nigrostriatal deafferentation. To test this hypothesis, we propose three aims: (1) Determine optimal in vitro
techniques to create dopaminergic micro-TENNs, using both differentiated neurons as well as stem-cell
derived neurons; (2) Assess micro-TENN capabilities to reconstruct the nigrostriatal pathway, restore
dopaminergic inputs, and ameliorate motor symptoms rodents; (3) Apply human-scale micro-TENNs to
reconstruct the nigrostriatal pathway in swine. Living dopaminergic micro-TENNs will be constructed with an
architecture consisting of a discrete population of neurons with unidirectional long-projecting axonal tracts.
Micro-TENN health, phenotype, structure, and function will be optimized in vitro. To enable clinical translation,
we will construct human-scale micro-TENNs using human stem cell derived dopaminergic neurons. Preformed
constructs will be stereotactically microinjected into neurodegenerative PD rat and pig models to assess circuit
reconstruction and motor symptom amelioration. Nigrostriatal pathway reconstruction will be assessed using
behavioral, imaging, electrophysiological, and histological outcomes. The proposed work will establish the
future clinical potential of personalized micro-TENNs to ameliorate PD motor symptoms by restoring the
dopaminergic nigrostriatal pathway. Our micro-tissue engineering strategy addresses a crucial gap in clinical
treatment by providing a means to directly replace the nigrostriatal pathway and, as a result, restore motor
function following PD neurodegeneration. By virtue of their long axonal tracts, micro-TENNs may be capable of
replacing degenerated circuitry to restore dopaminergic inputs to the striatum. Our custom process to generate
micro-TENNs enables a precisely engineered structure where the number of neurons and generation of
dopamine can be known prior to implantation, thus, alleviating issues of inconsistency historically seen in fetal
tissue grafts. Therefore, micro-TENNs may provide a transformative and scalable solution to permanently
replace lost neuroanatomy and alleviate the cause of motor symptoms for the millions of patient afflicted by
PD.
摘要
帕金森病(PD)是一种进行性神经退行性疾病,影响1-2%的65岁以上的人。的
PD的经典运动症状是由脑实质中多巴胺能神经元的选择性变性引起的,
黑质旁核(SNpc),导致其长投射轴突输入纹状体的损失。电流
治疗策略[例如,多巴胺替代,脑深部电刺激(DBS)]只能最大限度地减少
黑质纹状体退化的症状,不能直接替代丢失的通路。因此,我们提出了一个新的
再生医学解决方案,其中定制的微组织工程神经网络(TENN)是
移植以物理地替代从SNpc到纹状体的轴突连接。具体来说,微-
TENN将被移植到PD的啮齿动物和猪模型中,以直接替代SNpc神经元,恢复
轴突输入纹状体,并改善运动缺陷。我们的首要假设是,
由多巴胺能神经元和长的突出轴突束组成的微TENN将存活,
整合,从而在物理上重建黑质纹状体通路,以恢复运动功能的模型,
黑质纹状体传入阻滞为了验证这一假设,我们提出了三个目标:(1)确定最佳的体外
利用分化的神经元和干细胞,
(2)评估micro-TENN重建黑质纹状体通路,恢复
多巴胺能输入,并改善啮齿动物的运动症状;(3)将人类规模的微型TENN应用于
重建猪的黑质纹状体通路。活体多巴胺能微TENNs将用
由具有单向长投射轴突束的离散神经元群组成的结构。
Micro-TENN的健康、表型、结构和功能将在体外进行优化。为了实现临床翻译,
我们将使用人类干细胞衍生的多巴胺能神经元构建人类规模的微型TENN。预成型
将构建体立体定向显微注射到神经退行性PD大鼠和猪模型中以评估回路
重建和运动症状改善。黑质纹状体通路重建将使用
行为、成像、电生理和组织学结果。拟议的工作将建立
个性化微型TENN的未来临床潜力,以改善PD运动症状,
多巴胺能黑质纹状体通路我们的微组织工程策略解决了临床
通过提供直接替代黑质纹状体通路的方法进行治疗,从而恢复运动
PD神经变性后的功能。由于它们的长轴突束,微TENN可能能够
替换退化的回路以恢复对纹状体的多巴胺能输入。我们的定制流程生成
微TENN能够实现精确工程化的结构,其中神经元的数量和神经元的生成
多巴胺可以在植入之前已知,因此,减轻了历史上在胎儿中看到的不一致问题。
组织移植因此,微TENN可以提供一种变革性和可扩展的解决方案,以永久地
取代失去的神经解剖结构,减轻数百万受
警局
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kacy Cullen其他文献
Daniel Kacy Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kacy Cullen', 18)}}的其他基金
Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
- 批准号:
10737098 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10373065 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10820173 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue engineered rostral migratory stream for directed neuronal replacement
用于定向神经元替换的组织工程嘴部迁移流
- 批准号:
10527087 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10210547 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10608115 - 财政年份:2021
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
9916439 - 财政年份:2020
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10553170 - 财政年份:2020
- 资助金额:
-- - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10438522 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
- 批准号:
2301846 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
- 批准号:
23K16076 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




