Tissue Engineered Nigrostriatal Pathway for Anatomical Tract Reconstruction in Parkinson's Disease
组织工程黑质纹状体通路用于帕金森病的解剖束重建
基本信息
- 批准号:10737098
- 负责人:
- 金额:$ 40.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2028-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdhesivesAffectAnatomyAnimal ModelAnimalsArchitectureAxonBasal GangliaBehavioralCell TherapyCellsCessation of lifeCharacteristicsClinical ResearchClinical TreatmentConfocal MicroscopyCorpus striatum structureDLG4 geneDendritesDisease modelDopamineDorsalElectrophysiology (science)EnsureExcisionExhibitsFiberForelimbFutureGIRK2 subunit, G protein-coupled inwardly-rectifying potassium channelGeneticGoalsHumanHyaluronic AcidHydrogelsImmunohistochemistryImplantIn VitroLesionLimb structureMapsMeasurementMeasuresMediatingMedicalMethodsModelingModificationMotorNerve DegenerationNeural PathwaysNeuritesNeuroanatomyNeurodegenerative DisordersNeuronsNeurosciencesOpticsOutcomeParkinson DiseasePathway interactionsPatientsPatternPerformancePeriodicityPersonsPhysiologicalPopulationPositron-Emission TomographyPresynaptic TerminalsRattusRecoveryRegulationRoleScanningSignal TransductionSubstantia nigra structureSynapsesSynapsinsSystemTechniquesTestingTimeTissue EngineeringTubular formationVisualizationbiomaterial compatibilitydopaminergic neuronhuman stem cellsimplantationimprovedin vivoinduced pluripotent stem cellmotor deficitmotor recoverymotor symptommultidisciplinaryneglectnerve supplyneuralneuroimagingneurosurgerynigrostriatal pathwaypars compactapharmacologicpostsynapticpreclinical studypreservationpresynapticrabies viral tracingreceptor functionreconstructionreinnervationrepairedresponserestorationstem cell differentiationstem cellstau Proteinstreatment strategyuptake
项目摘要
ABSTRACT
Parkinson’s disease (PD) is a progressive neurodegenerative disease that affects 10 million people worldwide.
Its motor symptoms result from selective degeneration of dopaminergic neurons in the substantia nigra pars
compacta, leading to a loss of their long-projecting axonal inputs to the striatum. Conventional cell therapy
involves implanting dopaminergic neurons into the striatum; however, this strategy disregards the important
systems-level implications of the native neuroanatomy. Pathway reconstruction strategies aim to address this
limitation by replacing both neurons and axonal fibers in a manner that restores the anatomy – and hence
circuit function – of the lost pathway. We have developed a reconstruction strategy whereby tissue-engineered
nigrostriatal pathways (TE-NSPs) are pre-fabricated in vitro featuring a population of human stem cell-derived
dopaminergic neurons and their long-projecting axonal tracts encased within a biocompatible tubular hydrogel.
TE-NSPs may be implanted to directly replace the pathway, supplying both dopaminergic neurons to the nigra
and providing axonal inputs to the striatum, thereby restoring crucial interconnectivity of the basal ganglia. In
this proposal, we will answer a fundamental and neglected question in cell therapy for PD by characterizing
whether pathway reconstruction with the TE-NSPs enables improved restoration of motor function compared to
conventional striatal grafts in a rat model of PD. Our overarching hypothesis is that TE-NSPs will lead to more
robust motor recovery than striatal grafts through a mechanism involving the reestablishment of physiological
innervation and striatal dopamine regulation patterns more closely matching those of native basal ganglia. This
hypothesis will be tested over three Aims: (1) Establish the ability of TE-NSPs to reconstruct basal ganglia
circuitry via axonal-dendritic synaptic integration; (2) Demonstrate real-time efficacy of TE-NSPs in restoring
nigrostriatal functionality; (3) Assess the influence of TE-NSP activity on motor recovery. TE-NSP mechanisms
and efficacy will be compared to hydrogel-encased nigral or striatal grafts, acellular hydrogel implants, as well
as non-implant and non-lesioned animals out to 24 weeks post-implantation. Motor function will be evaluated
with rotational, forelimb asymmetry and adhesive removal tests. Innervation and connectivity patterns will be
assessed with immunohistochemistry and monosynaptic rabies tracing, while ex vivo and in vivo voltammetry
and [18F]F-DOPA positron emission tomography will be used to analyze real-time dopamine release and
uptake in the striatum. We will also employ chemogenetics to silence neural activity in TE-NSPs to test the
effects on motor function. Overall, TE-NSPs address a crucial gap in clinical treatment by providing a means to
directly replace the nigrostriatal pathway, which may yield significant benefits over other methods by providing
properly-regulated dopamine in the striatum as characteristic of integrated basal ganglia circuitry. These
studies will further the long-term goal of advancing TE-NSPs as a Tissue Engineered Medical Product to
mitigate the neuronal-axonal loss underlying the motor symptoms in patients afflicted by PD.
抽象的
帕金森病 (PD) 是一种进行性神经退行性疾病,影响全球 1000 万人。
其运动症状是由于黑质部多巴胺能神经元的选择性变性所致
致密,导致其向纹状体的长期投射轴突输入丧失。常规细胞疗法
涉及将多巴胺能神经元植入纹状体;然而,这一策略忽视了重要的
天然神经解剖学的系统级影响。通路重建策略旨在解决这个问题
通过以恢复解剖结构的方式替换神经元和轴突纤维来克服限制 - 因此
电路功能——丢失的通路。我们开发了一种重建策略,通过组织工程
黑质纹状体通路 (TE-NSP) 是在体外预制的,具有源自人类干细胞的群体
多巴胺能神经元及其长突出的轴突束包裹在生物相容性管状水凝胶内。
可以植入 TE-NSP 来直接替代该通路,为黑质提供两个多巴胺能神经元
并向纹状体提供轴突输入,从而恢复基底神经节的重要互连性。在
在这项提案中,我们将通过表征来回答 PD 细胞疗法中一个基本且被忽视的问题
与相比,TE-NSP 的通路重建是否能够改善运动功能的恢复
PD大鼠模型中的传统纹状体移植物。我们的首要假设是 TE-NSP 将带来更多
通过涉及重建生理功能的机制,比纹状体移植物具有更强的运动恢复能力
神经支配和纹状体多巴胺调节模式与本地基底神经节更加匹配。这
假设将通过三个目标进行检验:(1)建立 TE-NSP 重建基底神经节的能力
通过轴突树突突触整合的电路; (2) 展示 TE-NSP 在恢复中的实时功效
黑质纹状体功能; (3)评估TE-NSP活性对运动恢复的影响。 TE-NSP机制
并将功效与水凝胶包裹的黑质或纹状体移植物、无细胞水凝胶植入物以及
植入后 24 周内为非植入且未病变的动物。将评估运动功能
进行旋转、前肢不对称和粘合剂去除测试。神经支配和连接模式将是
通过免疫组织化学和单突触狂犬病追踪以及离体和体内伏安法进行评估
[18F]F-DOPA正电子发射断层扫描将用于分析实时多巴胺释放和
纹状体的摄取。我们还将采用化学遗传学来沉默 TE-NSP 中的神经活动,以测试
对运动功能的影响。总体而言,TE-NSP 通过提供一种方法来解决临床治疗中的一个关键差距
直接取代黑质纹状体通路,这可能比其他方法产生显着的好处,因为
纹状体中多巴胺的适当调节是整合基底神经节电路的特征。这些
研究将进一步推进 TE-NSP 作为组织工程医疗产品的长期目标
减轻帕金森病患者运动症状背后的神经元轴突损失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel Kacy Cullen其他文献
Daniel Kacy Cullen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel Kacy Cullen', 18)}}的其他基金
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10373065 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10820173 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue engineered rostral migratory stream for directed neuronal replacement
用于定向神经元替换的组织工程嘴部迁移流
- 批准号:
10527087 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10210547 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
Tissue Engineered Rostral Migratory Stream for Directed Neuronal Replacement
用于定向神经元替换的组织工程嘴侧迁移流
- 批准号:
10608115 - 财政年份:2021
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
9916439 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10553170 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
SDR: Genomic analysis of blast tube induced TBI in mice
SDR:小鼠爆管诱发 TBI 的基因组分析
- 批准号:
10438522 - 财政年份:2020
- 资助金额:
$ 40.23万 - 项目类别:
Transplantable Micro-Tissue Engineered Neural Networks to Restore the Nigrostriatal Pathway in Parkinson's Disease
可移植微组织工程神经网络恢复帕金森病的黑质纹状体通路
- 批准号:
10403480 - 财政年份:2017
- 资助金额:
$ 40.23万 - 项目类别:
相似海外基金
I-Corps: Translation Potential of Peptidic Ensembles as Novel Bio-adhesives
I-Corps:肽整体作为新型生物粘合剂的转化潜力
- 批准号:
2409620 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Architectural design of active adhesives
活性粘合剂的结构设计
- 批准号:
2403716 - 财政年份:2024
- 资助金额:
$ 40.23万 - 项目类别:
Standard Grant
Design of non-swellable adhesives for brain surgery using cyclodextrin inclusion polymer
使用环糊精包合物聚合物脑外科不可溶胀粘合剂的设计
- 批准号:
23H01718 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Meta-material adhesives for improved performance and functionalisation of bondlines
超材料粘合剂可提高粘合层的性能和功能化
- 批准号:
EP/W019450/1 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Fellowship
Light-propelled dental adhesives with enhanced bonding capability
具有增强粘合能力的光驱动牙科粘合剂
- 批准号:
10741660 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
DMREF: Accelerating the Design of Adhesives with Nanoscale Control of Thermomechanical Properties
DMREF:通过热机械性能的纳米级控制加速粘合剂的设计
- 批准号:
2323317 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Continuing Grant
Mag-Cure: A novel method for magnetically induced bonding and de-bonding of thermoset adhesives in the Automotive Industry
Mag-Cure:汽车行业中热固性粘合剂磁感应粘合和脱粘的新方法
- 批准号:
10062336 - 财政年份:2023
- 资助金额:
$ 40.23万 - 项目类别:
Collaborative R&D
Biodegradable, Biocompatible Pressure Sensitive Adhesives
可生物降解、生物相容性压敏粘合剂
- 批准号:
10677869 - 财政年份:2022
- 资助金额:
$ 40.23万 - 项目类别:
Poly(glycerol carbonate) pressure sensitive adhesives for the in vivo closure of alveolar pleural fistulae
用于体内闭合肺泡胸膜瘘的聚(甘油碳酸酯)压敏粘合剂
- 批准号:
10746743 - 财政年份:2022
- 资助金额:
$ 40.23万 - 项目类别:
Enhanced bio-production of difficult to make peptide ingredients for specialty adhesives and personal care
增强用于特种粘合剂和个人护理品的难以制造的肽成分的生物生产
- 批准号:
10021363 - 财政年份:2022
- 资助金额:
$ 40.23万 - 项目类别:
Investment Accelerator














{{item.name}}会员




