Role of extracellular matrix in age-related declines of muscle regeneration
细胞外基质在年龄相关的肌肉再生衰退中的作用
基本信息
- 批准号:10410777
- 负责人:
- 金额:$ 28.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAdministrative SupplementAdoptedAgeAgingArchitectureArtificial IntelligenceBayesian ModelingBenchmarkingBiologicalBiology of AgingBiomechanicsBiophysicsCell AdhesionCharacteristicsComplexCultured CellsDataData SetDescriptorElasticityElderlyEnvironmentEpigenetic ProcessExtracellular MatrixFlow CytometryGoalsImageImpairmentIndividualInjuryKnowledgeMachine LearningMetabolicMetadataMitochondriaModelingMuscleMuscle satellite cellNatural regenerationProcessProtocols documentationRegenerative responseResearchResearch PersonnelRoleSignal PathwaySignal TransductionSignaling MoleculeSkeletal MuscleStudentsTestingUniversitiesage relatedage-related muscle lossdata managementfunctional declinehackathonhealingmodel buildingmuscle agingmuscle regenerationnovel therapeutic interventionparent grantpredictive modelingregeneration potentialresponsesingle-cell RNA sequencingstem cell biologystem cell functionstem cells
项目摘要
PROJECT SUMMARY
The capacity for muscle regeneration decreases markedly with aging. While regeneration is led by muscle
stem cells (MuSC), complex age-related changes in the skeletal muscle extracellular matrix (ECM) provide
potent signals that drive aberrant lineage specification. The complexity of the interactions between aging
MuSC and their environmental niche defined by biomechanical, architectural, and dynamic changes in the
ECM suggests a data-driven analysis can elucidate underlying mechanisms, increase our fundamental
understanding of aging and stem cell biology, and point to novel therapeutic strategies. In this research, -omics
data (i.e., single cell RNA-seq and imaging flow cytometry assessments of myogenic markers) obtained from
cells cultured onto substrates of varying elasticity and cell-adhesion will be used to probe signaling pathways
including mitochondrial/metabolic signaling pathways in cultured MuSCs. We propose that the implementation
of machine learning/artificial intelligence (ML/AI) paradigms represents a critical next step for integrating multi-
layer -omics datasets and building predictive models that will more comprehensively elucidate stem cell
responses to the extrinsic biophysical environment.
The overarching goal of this Supplement is to test the central hypothesis that Biological data and domain
knowledge relating to muscle aging can be embedded in a framework of Bayesian optimization will allow for
elucidating mechanisms and accurately predicting regenerative responses. This central hypothesis will be
tested by conducting three specific aims: Specific Aim 1. To prepare -omics data for ML models: Curate
datasets, identify and impute missing data, compile metadata, and pre-process data to quantify descriptors
used in model building. Adopt data management protocols associated with best practices. Specific Aim 2. To
perform benchmark ML modeling with Bayesian optimization: Identify environmental variables (ECM stiffness
and composition, signaling molecules) and cellular characteristics (age, expression markers) that correlate with
epigenetic signatures and myogenicity, then develop mechanistic ML models and estimate posterior
distributions. Specific Aim 3. To broaden approaches to ML modeling and broaden researcher engagement in
the biology of aging: CMU will host a hackathon with teams that combine students and researchers from
regional universities and HBCU partners.
项目摘要
随着年龄的增长,肌肉再生能力明显下降。而再生是由肌肉主导的
骨骼肌细胞外基质(ECM)中与年龄相关的复杂变化提供了
驱动异常谱系特化的有力信号。老龄化与人类的
MuSC及其环境生态位由生物力学,结构和动态变化定义,
ECM表明,数据驱动的分析可以阐明潜在的机制,增加我们的基本
了解衰老和干细胞生物学,并指出新的治疗策略。在这项研究中,
数据(即,单细胞RNA-seq和成肌标志物的成像流式细胞术评估),
在不同弹性和细胞粘附性的基质上培养的细胞将用于探测信号通路
包括培养的MuSC中的线粒体/代谢信号传导途径。我们建议,
机器学习/人工智能(ML/AI)范式的发展代表了集成多个领域的关键下一步
层组学数据集和建立预测模型,将更全面地阐明干细胞
对外在生物物理环境的反应。
本补充的首要目标是测试生物数据和域
与肌肉老化有关的知识可以嵌入贝叶斯优化的框架中,
阐明机制并准确预测再生反应。这一核心假设将是
通过三个具体目标进行测试:具体目标1。为ML模型准备组学数据:Curate
数据集,识别和估算缺失数据,编译元数据,并预处理数据以量化描述符
用于模型构建。采用与最佳实践相关的数据管理协议。具体目标2。到
使用贝叶斯优化执行基准ML建模:识别环境变量(ECM刚度
和组成,信号分子)和细胞特征(年龄,表达标志物),
表观遗传特征和肌原性,然后开发机制ML模型,并估计后验
分布。具体目标3。为了拓宽ML建模的方法并扩大研究人员的参与,
衰老的生物学:CMU将举办一个黑客会议,由来自以下地区的联合收割机学生和研究人员组成的团队参加:
区域大学和HBCU合作伙伴。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabrisia Ambrosio其他文献
Fabrisia Ambrosio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabrisia Ambrosio', 18)}}的其他基金
Alliance for Regenerative Rehabilitation Research & Training 2.0 (AR3T)
再生康复研究联盟
- 批准号:
10830114 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Genetic information flow in the Hallmarks of Aging: from system-level analytics to mechanistic interventions
衰老标志中的遗传信息流:从系统级分析到机械干预
- 批准号:
10721479 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Physical exercise and Blood-brain communication: exosomes, Klotho and choroid plexus
体育锻炼和血脑通讯:外泌体、Klotho 和脉络丛
- 批准号:
10083686 - 财政年份:2020
- 资助金额:
$ 28.14万 - 项目类别:
相似海外基金
A Longitudinal Qualitative Study of Fentanyl-Stimulant Polysubstance Use Among People Experiencing Homelessness (Administrative supplement)
无家可归者使用芬太尼兴奋剂多物质的纵向定性研究(行政补充)
- 批准号:
10841820 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Proton-secreting epithelial cells as key modulators of epididymal mucosal immunity - Administrative Supplement
质子分泌上皮细胞作为附睾粘膜免疫的关键调节剂 - 行政补充
- 批准号:
10833895 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Administrative Supplement: Life-Space and Activity Digital Markers for Detection of Cognitive Decline in Community-Dwelling Older Adults: The RAMS Study
行政补充:用于检测社区老年人认知衰退的生活空间和活动数字标记:RAMS 研究
- 批准号:
10844667 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
StrokeNet Administrative Supplement for the Funding Extension
StrokeNet 资助延期行政补充文件
- 批准号:
10850135 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
- 批准号:
10896844 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Biomarkers of Disease in Alcoholic Hepatitis Administrative Supplement
酒精性肝炎行政补充剂中疾病的生物标志物
- 批准号:
10840220 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Administrative Supplement: Improving Inference of Genetic Architecture and Selection with African Genomes
行政补充:利用非洲基因组改进遗传结构的推断和选择
- 批准号:
10891050 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Power-Up Study Administrative Supplement to Promote Diversity
促进多元化的 Power-Up 研究行政补充
- 批准号:
10711717 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Administrative Supplement for Peer-Delivered and Technology-Assisted Integrated Illness Management and Recovery
同行交付和技术辅助的综合疾病管理和康复的行政补充
- 批准号:
10811292 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:
Administrative Supplement: Genome Resources for Model Amphibians
行政补充:模型两栖动物基因组资源
- 批准号:
10806365 - 财政年份:2023
- 资助金额:
$ 28.14万 - 项目类别:














{{item.name}}会员




