Accelerating discovery of the human foveal microconnectome with deep learning
通过深度学习加速人类中心凹微连接组的发现
基本信息
- 批准号:10411154
- 负责人:
- 金额:$ 109.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptedAge related macular degenerationAgingAmazeApicalArtificial IntelligenceBrainBrain DiseasesCellsCellular MorphologyCentral Nervous System DiseasesClinicalCollaborationsColorColor VisionsComplexComputer softwareConeCytoplasmDataDevelopmentDiabetic RetinopathyDiagnostic ImagingDietary ComponentDiseaseElectron MicroscopyEyeFloorForm PerceptionFunctional disorderFutureGoalsHumanImageIndustryIon ChannelLeadLicensingLinkMachine LearningManualsMeasuresMediatingMembraneMethodsModelingMotionMuller&aposs cellMusNeocortexNervous system structureNeuraxisNeurobiologyNeurodegenerative DisordersNeurogliaNeuronsNeurophysiology - biologic functionNeurosciencesOphthalmologyOrgan DonorOrganellesOutcomeOutputPhotoreceptorsPigmentsPlayProcessRecoveryResearchRetinaRetinal ConeRetinal DiseasesRodRoleShort Interspersed Nucleotide ElementsSignal TransductionSoftware ToolsSpatial DistributionStructureStructure of retinal pigment epitheliumSupporting CellSurfaceSynapsesSystemTechniquesTechnologyTestingTimeTissuesVisionVisualVisual PathwaysXanthophyllsautomated segmentationbasecell typeclinical diagnosticsclinical imagingconvolutional neural networkcostdata visualizationdeep learningdeep learning modeldensitydisease diagnosisflyfovea centralisinnovationlearning strategymicroscopic imagingnanoscaleneural circuitnovelpostsynapticpreservationpresynapticrapid techniquereconstructionrelating to nervous systemretinal imagingretinal neuronsoftware developmentsystems researchtoolvision science
项目摘要
Project Summary
The human retina is one of the most complex microcircuits of the central nervous system (CNS) and is a model
of CNS neurodegenerative disease with unique advantages for microconnectomics technology advancement.
The central retina or fovea mediates high acuity vision, drives activity in half of the brain, and is a critical locus
for prevalent blinding disease. The fovea is small (<1 mm), accessible, and relevant to CNS disease diagnosis
through advanced cellular-level clinical imaging. The full foveal microconnectome comprises both the diverse
neural circuits that create parallel visual pathways as well as complex microconnectivity with two specialized
cell types of neuroectodermal origin, the retinal pigment epithelium (RPE) and the Müller glia. Our group has
pioneered ultra-short recovery times of eyes from organ donors, to create exquisitely preserved retinal tissue
volumes suitable for the first microconnectomic analysis of an intensively investigated human CNS structure.
The goal of this proposal is to accelerate the human foveal microconnectome by refining and augmenting a
highly successful and professionally supported software platform, Dragonfly by Object Research Systems
(ORS), an industry leader in implementation of deep learning methods for auto-segmentation of complex
structure. Our collaboration with ORS will target development of deep learning (DL) models as well as
annotation and proofreading tools that will have broad applicability to neuroscience microconnectomics. In
preliminary studies we discovered that RPE cells give rise to extremely dense neural-like projections to
photoreceptor cells and that foveal Müller glia similarly have a specialized and complex relationship to foveal
microcircuits. Moreover, single foveal cone photoreceptors were presynaptic to dozens of parallel visual
circuits of extreme complexity. To advance understanding of these complex microconnectomes ORS will
augment fast auto-segmentation using newly developed convolutional neural networks and refine sophisticated
tools for rapid annotation, proofreading, data visualization, and quantitative analysis. In Aims 1 and 2 we will
develop complete deep learning models of the human RPE cell-neuronal microconnectome and the Müller cell-
neuronal microconnectome respectively that will transform our understanding of the critical roles these cell
types play in foveal function and disease. In Aim 3 we will develop a deep learning model of the multiple neural
cell types and microconnectome of parallel visual pathways for form, color, and motion vision. The major
outcome will be the transformation of a powerful, widely used, professionally supported, DL-based platform for
broad application to neuroscience microconnectomics, free for academic research via a no-cost license. The
ORS-Dragonfly platform will accelerate microconnectomics of complex CNS circuitry and impact systems
neuroscience, human neuro-pathophysiology, and interpretation of cellular-level clinical imaging. This proposal
combines expertise and innovation in neurobiology, vision science, clinical ophthalmology and connectomics,
with DL software development and application.
项目摘要
人类视网膜是中枢神经系统(CNS)最复杂的微电路之一,是一种
对中枢神经系统退行性疾病具有独特优势的微连接技术的进步。
中央视网膜或中央凹调节高视力,驱动半个大脑的活动,是一个关键部位。
针对流行的失明疾病。中心凹很小(1毫米),容易接近,与中枢神经系统疾病的诊断有关
通过先进的细胞级临床成像。完整的中心凹微连接包括不同的
神经回路创建平行的视觉通路以及复杂的微连接,与两个专门的
神经外胚层起源的细胞类型,视网膜色素上皮(RPE)和Müler胶质细胞。我们的团队已经
首创从器官捐赠者那里恢复眼睛的超短时间,创造出保存完好的视网膜组织
体积适合于对深入研究的人类中枢神经系统结构进行第一次微连接分析。
这项提议的目标是通过提炼和增强一种
高度成功和专业支持的软件平台,蜻蜓by Object Research Systems
(ORS),在实施深度学习方法以实现复杂的自动分割方面的行业领导者
结构。我们与ORS的合作将致力于深度学习(DL)模型的开发以及
对神经科学微连接学有广泛适用性的注释和校对工具。在……里面
初步研究发现,RPE细胞会产生非常密集的神经样投射,
光感受器细胞和中心凹Müler胶质细胞与中心凹同样具有特殊而复杂的关系
微电路。此外,单个中心凹视锥感光感受器与数十个平行视觉感受器发生突触前反应。
极其复杂的电路。为了促进对这些复杂的微连接的理解,ORS将
使用最新开发的卷积神经网络增强快速自动分割并精炼复杂
用于快速注释、校对、数据可视化和定量分析的工具。在目标1和2中,我们将
建立完整的人视网膜色素上皮细胞-神经元微连接组和Müler细胞的深度学习模型
这将改变我们对这些细胞的关键作用的理解
类型在中心凹功能和疾病中起作用。在目标3中,我们将建立多个神经网络的深度学习模型
形态、颜色和运动视觉的平行视觉通路的细胞类型和微连接。少校
结果将是一个强大的、广泛使用的、专业支持的、基于DL的平台
广泛应用于神经科学微连接学,通过免费许可证免费进行学术研究。这个
ORS-蜻蜓平台将加速复杂CNS电路和撞击系统的微连接
神经科学、人类神经病理生理学和细胞水平临床成像的解释。这项建议
结合了神经生物学、视觉科学、临床眼科和连接学的专业知识和创新,
具备数字图书馆软件的开发和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DENNIS MICHAEL DACEY其他文献
DENNIS MICHAEL DACEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DENNIS MICHAEL DACEY', 18)}}的其他基金
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10093434 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10321204 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
Synaptic Architecture and Mechanisms of Direction Selectivity in Primate Retina
灵长类视网膜突触结构和方向选择性机制
- 批准号:
10525244 - 财政年份:2021
- 资助金额:
$ 109.99万 - 项目类别:
PHYSIOLOGY OF MACAQUE HORIZONTAL CELLS: THEIR ROLE IN SPATIAL AND COLOR VISION
猕猴水平细胞的生理学:它们在空间和色觉中的作用
- 批准号:
8357581 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
ANATOMY AND PHYSIOLOGY OF NOVEL GANGLION CELL TYPES IN MACAQUE RETINA
猕猴视网膜中新型神经节细胞的解剖学和生理学
- 批准号:
8357583 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
CIRCUITRY OF THE MIDGET AND PARASOL RECEPTIVE FIELD
侏儒和阳伞接受区的电路
- 批准号:
8357582 - 财政年份:2011
- 资助金额:
$ 109.99万 - 项目类别:
相似海外基金
How novices write code: discovering best practices and how they can be adopted
新手如何编写代码:发现最佳实践以及如何采用它们
- 批准号:
2315783 - 财政年份:2023
- 资助金额:
$ 109.99万 - 项目类别:
Standard Grant
One or Several Mothers: The Adopted Child as Critical and Clinical Subject
一位或多位母亲:收养的孩子作为关键和临床对象
- 批准号:
2719534 - 财政年份:2022
- 资助金额:
$ 109.99万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633211 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Studentship
A material investigation of the ceramic shards excavated from the Omuro Ninsei kiln site: Production techniques adopted by Nonomura Ninsei.
对大室仁清窑遗址出土的陶瓷碎片进行材质调查:野野村仁清采用的生产技术。
- 批准号:
20K01113 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2436895 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Studentship
A comparative study of disabled children and their adopted maternal figures in French and English Romantic Literature
英法浪漫主义文学中残疾儿童及其收养母亲形象的比较研究
- 批准号:
2633207 - 财政年份:2020
- 资助金额:
$ 109.99万 - 项目类别:
Studentship
The limits of development: State structural policy, comparing systems adopted in two European mountain regions (1945-1989)
发展的限制:国家结构政策,比较欧洲两个山区采用的制度(1945-1989)
- 批准号:
426559561 - 财政年份:2019
- 资助金额:
$ 109.99万 - 项目类别:
Research Grants
Securing a Sense of Safety for Adopted Children in Middle Childhood
确保被收养儿童的中期安全感
- 批准号:
2236701 - 财政年份:2019
- 资助金额:
$ 109.99万 - 项目类别:
Studentship
A Study on Mutual Funds Adopted for Individual Defined Contribution Pension Plans
个人设定缴存养老金计划采用共同基金的研究
- 批准号:
19K01745 - 财政年份:2019
- 资助金额:
$ 109.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural and functional analyses of a bacterial protein translocation domain that has adopted diverse pathogenic effector functions within host cells
对宿主细胞内采用多种致病效应功能的细菌蛋白易位结构域进行结构和功能分析
- 批准号:
415543446 - 财政年份:2019
- 资助金额:
$ 109.99万 - 项目类别:
Research Fellowships