Early representation of 3D volumetric shape in visual object processing
视觉对象处理中 3D 体积形状的早期表示
基本信息
- 批准号:10412966
- 负责人:
- 金额:$ 48.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-Dimensional3D worldAreaBiologicalBrainCalcium SignalingCodeComputer Vision SystemsCuesDataElectrodesFunctional ImagingFutureGenetic ProgrammingGlassGoalsHumanImageImplantLeadLearningMeasuresMedialMicroelectrodesMicroscopicMicroscopyModelingMonkeysNetwork-basedNeuronsOcular ProsthesisPathway interactionsPatientsPatternPerformancePopulationPrevalenceProsthesisRehabilitation therapyScientistSeriesShapesSignal TransductionStimulusStructureSurfaceSynapsesSystemTestingTextureThree-dimensional analysisTimeV4 neuronVisionVisual CortexVisual PerceptionVisual impairmentWorkarea V4area striatabaseconvolutional neural networkexperimental studyindividual responsenetwork modelsneurotransmissionnonhuman primatenovelobject perceptionobject recognitionoperationrelating to nervous systemresponsethree dimensional structuretwo-photonvirtual realityvisual object processing
项目摘要
Project Summary
The goal of this project is to test a novel theoretical framework for understanding how the ventral pathway
subserves object vision. In the standard framework, a series of neural operations on 2D image data through
many intermediate cortical stages, including area V4, leads to high-level perceptual representations, including
representation of object identity, at the final stages of the ventral pathway. However, our preliminary
microelectrode data from a fixating monkey show that many neurons in V4 represent volumetric (volume-
enclosing) 3D shape, not 2D image patterns. These neurons respond to many different 2D images that convey
the same 3D shape with different shape-in-depth cues, including shading, reflection, and refraction. They even
respond preferentially to random dot stereograms that convey 3D volumetric shape with no 2D cues
whatsoever. Moreover, our preliminary results with 2-photon functional imaging in anesthetized monkey V4
show that 3D shape signals are grouped by their similarity, and also group with isomorphic (same outline) 2D
shape signals (which could contribute evidence to corresponding 3D shape inferences). We propose to
capitalize on these preliminary data by demonstrating the prevalence of 3D shape tuning in area V4, analyzing
the 3D shape coding strategies used by these neurons, and measuring how 2D and 3D shape signals are
arranged at a microscopic level across the surface of V4. We expect these results to provide strong evidence
that extraction of 3D shape fragments is a primary goal of V4 processing. This early extraction of 3D shape
information, just two synapses beyond primary visual cortex, would suggest a competing framework for
understanding the ventral pathway, in which the initial goal is to represent 3D physical structure, independent
of the various 2D image cues used to infer it. In this framework, object recognition would be based on
preceding information about 3D physical structure, which would explain why human object recognition is so
robust to image changes, in a way that the best computational vision systems are not. The scientific impact of
this work would be to divert vision experiments toward understanding representation of real world 3D structure
(rather than 2D planar stimuli) and to encourage computational vision scientists to incorporate early 3D shape
processing into the deep convolutional network models that are the current state of the art.
项目摘要
这个项目的目标是测试一个新的理论框架,以了解腹侧通路如何
有助于观察物体。在标准框架中,对2D图像数据的一系列神经操作通过
许多中间皮层阶段,包括V4区,导致高水平的知觉表征,包括
在腹侧通路的最后阶段,物体身份的表征。然而,我们的初步
来自固定猴的微电极数据显示,V4中的许多神经元代表体积(体积-
包围)3D形状,而不是2D图像图案。这些神经元对许多不同的2D图像做出反应,
相同的3D形状具有不同的形状深度提示,包括阴影,反射和折射。他们甚至
优先响应于传达3D体积形状而没有2D提示的随机点立体图
不管怎样此外,我们的初步结果与双光子功能成像在麻醉猴V4
示出了3D形状信号通过它们相似性被分组,且还与同构(相同轮廓)2D
形状信号(其可以为相应的3D形状推断提供证据)。我们建议
利用这些初步数据,通过展示V4区3D形状调整的普遍性,分析
这些神经元使用的3D形状编码策略,并测量2D和3D形状信号是如何
排列在V4表面的微观水平上。我们期望这些结果能提供有力的证据
3D形状碎片提取是V4处理的主要目标。这种早期的3D形状提取
信息,只有两个突触以外的初级视觉皮层,将建议一个竞争的框架,
理解腹侧通路,其中最初的目标是代表3D物理结构,独立
在这个框架中,物体识别将基于
前面关于3D物理结构的信息,这可以解释为什么人类物体识别如此
对图像变化的鲁棒性,在某种程度上,最好的计算视觉系统不是。科学影响
这项工作将使视觉实验转向理解真实的世界三维结构的表示
(而不是2D平面刺激),并鼓励计算视觉科学家将早期的3D形状
处理成当前技术水平的深度卷积网络模型。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Early Emergence of Solid Shape Coding in Natural and Deep Network Vision.
在自然和深层网络视觉中固体编码的早期出现。
- DOI:10.1016/j.cub.2020.09.076
- 发表时间:2021-01-11
- 期刊:
- 影响因子:0
- 作者:Srinath R;Emonds A;Wang Q;Lempel AA;Dunn-Weiss E;Connor CE;Nielsen KJ
- 通讯作者:Nielsen KJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CHARLES E CONNOR其他文献
CHARLES E CONNOR的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CHARLES E CONNOR', 18)}}的其他基金
CONVERGENT PROCESSING ACROSS VISUAL AND HAPTIC CIRCUITS FOR 3D SHAPE PERCEPTION
跨视觉和触觉电路的融合处理,实现 3D 形状感知
- 批准号:
10720137 - 财政年份:2023
- 资助金额:
$ 48.43万 - 项目类别:
Shape Learning: Computational Changes in Chronically Studied Neural Populations
形状学习:长期研究的神经群体的计算变化
- 批准号:
8858962 - 财政年份:2015
- 资助金额:
$ 48.43万 - 项目类别:
Shape Learning: Computational Changes in Chronically Studied Neural Populations
形状学习:长期研究的神经群体的计算变化
- 批准号:
9248364 - 财政年份:2015
- 资助金额:
$ 48.43万 - 项目类别:
Neural Coding of 3D Object and Place Structure in Two Cortical Pathways
两条皮质通路中 3D 物体和位置结构的神经编码
- 批准号:
8612222 - 财政年份:2014
- 资助金额:
$ 48.43万 - 项目类别:
Neural Coding of 3D Object and Place Structure in Two Cortical Pathways
两条皮质通路中 3D 物体和位置结构的神经编码
- 批准号:
8997097 - 财政年份:2014
- 资助金额:
$ 48.43万 - 项目类别:
CRCNS - Higher-Level Neural Specialization/Natural Shape
CRCNS - 高级神经专业化/自然形状
- 批准号:
7047434 - 财政年份:2005
- 资助金额:
$ 48.43万 - 项目类别:
相似海外基金
Building joint models of language and the 3D world
构建语言和 3D 世界的联合模型
- 批准号:
RGPIN-2020-07196 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Learning to Perceive the Interactive 3D World from an Image
职业:学习从图像感知交互式 3D 世界
- 批准号:
2142529 - 财政年份:2022
- 资助金额:
$ 48.43万 - 项目类别:
Continuing Grant
Building joint models of language and the 3D world
构建语言和 3D 世界的联合模型
- 批准号:
RGPIN-2020-07196 - 财政年份:2021
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
Building joint models of language and the 3D world
构建语言和 3D 世界的联合模型
- 批准号:
DGECR-2020-00310 - 财政年份:2020
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Launch Supplement
Building joint models of language and the 3D world
构建语言和 3D 世界的联合模型
- 批准号:
RGPIN-2020-07196 - 财政年份:2020
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
Updating head direction in a 3D world
更新 3D 世界中的头部方向
- 批准号:
2091869 - 财政年份:2018
- 资助金额:
$ 48.43万 - 项目类别:
Studentship
Intelligent 3D world building from mobile terrestrial LiDAR point clouds
利用移动地面 LiDAR 点云构建智能 3D 世界
- 批准号:
311923-2013 - 财政年份:2017
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
Intelligent 3D world building from mobile terrestrial LiDAR point clouds
利用移动地面 LiDAR 点云构建智能 3D 世界
- 批准号:
311923-2013 - 财政年份:2016
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
Intelligent 3D world building from mobile terrestrial LiDAR point clouds
利用移动地面 LiDAR 点云构建智能 3D 世界
- 批准号:
311923-2013 - 财政年份:2015
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual
Intelligent 3D world building from mobile terrestrial LiDAR point clouds
利用移动地面 LiDAR 点云构建智能 3D 世界
- 批准号:
311923-2013 - 财政年份:2014
- 资助金额:
$ 48.43万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




