Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
基本信息
- 批准号:10412060
- 负责人:
- 金额:$ 36.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-15 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectBiologicalBiological ProcessCISH geneCandidate Disease GeneCellsClinicalCollaborationsComplexComputer softwareDataData SourcesDiseaseDistalGene ExpressionGenesGeneticGenetic Complementation TestGenetic VariationGenomeGenomicsGenotypeGenotype-Tissue Expression ProjectGoalsHeightHumanJointsLearningLiteratureMapsMediatingMediationMethodsMethylationModelingPatternPhenotypePredispositionProtein MethylationProteinsProteomeProteomicsQuantitative Trait LociRegulationReportingResearchResearch DesignResourcesSamplingSchizophreniaScientistSourceStatistical MethodsStructureSusceptibility GeneTestingThe Cancer Genome AtlasTissuesTranscriptVariantWorkbasebiobankbrain tissuecell typecomputerized toolsdata resourceepigenomegene functiongenetic variantgenome wide association studygenome-widehuman diseasehuman tissueimprovedinterestmalignant breast neoplasmmolecular phenotypemultiple omicsnovelpredictive modelingpsychiatric genomicssoftware developmentstatisticstooltraittranscriptometransgene expressiontumorweb portal
项目摘要
ABSTRACT
Over the last decade, scientists have identified many thousands of disease/trait susceptibility loci, with more to
be discovered. However, the biological mechanisms by which these variants affect gene function and
downstream biological processes remain unclear. A promising path forward is to study the effects of genetic
variation on cellular/molecular phenotypes, such as the transcriptome, proteome, and epigenome (i.e., “omics”
phenotypes). Additionally, the analysis of the joint associations of a genetic variant to complex trait(s) and
omics-phenotypes has the potential to elucidate mechanisms underlying known associations or to reveal novel
relationships between genetic variants and complex traits. Our first aim is to develop methods to integrate QTL
association summary statistics from multiple studies/tissue-/cell-types with overlapping or independent
samples to identify the omics QTLs and multi-omics QTLs with coordinated effects (and potentially different
effect sizes) on multiple omics phenotypes in different conditions. Moreover, most existing omics QTL analyses
focus on cis-associations, because the study of trans-associations is underpowered after considering multiple
testing adjustment. In our second aim, we will propose novel methods to detect a particular yet quite prevalent
type of trans-association – the type mediated by a cis-gene transcript. Different than the trans-associations
with extreme effects that are often tissue-specific, the trans-associations mediated by cis-gene expression
often present effects shared among functionally related tissue types. As such, our proposed mediation
methods will borrow information across tissue types to improve power. An ultimate goal is how to further utilize
(cis- and trans-) QTLs in disease/trait-mapping and further understand their disease/trait relevance. In the third
aim, by harnessing gene-specific patterns of how eQTL effects are shared across different tissue types, we will
develop improved methods over existing methods for transcriptome-wide association studies. We will propose
models predicting gene expression levels in multiple tissue types and further associate genotype-predicted
expression levels in disease-relevant tissue types with complex diseases/traits using existing GWAS data. In
the three aims, we will analyze breast cancer, schizophrenia, and height, respectively, as three focused traits
in each aim by integrating data from Genotype-Tissue Expression Project (GTEx), Clinical Proteomic Tumor
Analysis Consortium (CPTAC), UK Biobank and summary statistics from large-scale genome-wide association
studies consortia. The proposed methods can be applied to other related diseases and traits. Our work will
identify new gene candidates associated with complex traits, as well as provide new hypotheses, tools, and
data resources that will accelerate future research efforts to understand the susceptibility mechanisms of
human diseases.
抽象的
在过去的十年中,科学家们已经确定了数千个疾病/性状易感位点,还有更多的位点有待进一步研究。
被发现。然而,这些变异影响基因功能的生物学机制和
下游生物过程仍不清楚。一条有希望的前进道路是研究遗传的影响
细胞/分子表型的变异,例如转录组、蛋白质组和表观基因组(即“组学”)
表型)。此外,分析遗传变异与复杂性状的联合关联
组学表型有可能阐明已知关联的机制或揭示新的关联
遗传变异和复杂性状之间的关系。我们的首要目标是开发整合 QTL 的方法
来自重叠或独立的多项研究/组织/细胞类型的关联汇总统计数据
样本来识别具有协调效应的组学 QTL 和多组学 QTL(以及可能不同的
效应大小)对不同条件下多个组学表型的影响。此外,大多数现有的组学 QTL 分析
重点关注顺式关联,因为在考虑多重关联后,反式关联的研究动力不足
测试调整。在我们的第二个目标中,我们将提出新颖的方法来检测特定但相当普遍的
反式关联类型——由顺式基因转录物介导的类型。与跨关联不同
顺式基因表达介导的反式关联具有通常具有组织特异性的极端效应
通常存在功能相关组织类型之间共享的效应。因此,我们建议的调解
方法将借用跨组织类型的信息来提高功效。最终目标是如何进一步利用
疾病/性状作图中的(顺式和反式)QTL,并进一步了解它们的疾病/性状相关性。在第三个
目标是,通过利用不同组织类型之间共享 eQTL 效应的基因特异性模式,我们将
为全转录组关联研究开发现有方法的改进方法。我们将提出
预测多种组织类型中基因表达水平的模型,并进一步关联基因型预测
使用现有的 GWAS 数据确定具有复杂疾病/性状的疾病相关组织类型的表达水平。在
这三个目标,我们将分别分析乳腺癌、精神分裂症和身高,作为三个重点特征
通过整合基因型组织表达项目 (GTEx)、临床蛋白质组肿瘤的数据来实现每个目标
分析联盟 (CPTAC)、英国生物银行和大规模全基因组协会的汇总统计数据
研究联盟。所提出的方法可应用于其他相关疾病和性状。我们的工作将
识别与复杂性状相关的新候选基因,并提供新的假设、工具和
数据资源将加速未来的研究工作,以了解疾病的易感性机制
人类疾病。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A new method to study the change of miRNA-mRNA interactions due to environmental exposures.
- DOI:10.1093/bioinformatics/btx256
- 发表时间:2017-07-15
- 期刊:
- 影响因子:0
- 作者:Petralia F;Aushev VN;Gopalakrishnan K;Kappil M;W Khin N;Chen J;Teitelbaum SL;Wang P
- 通讯作者:Wang P
Characterizing functional consequences of DNA copy number alterations in breast and ovarian tumors by spaceMap.
通过 spaceMap 表征乳腺癌和卵巢肿瘤中 DNA 拷贝数变化的功能后果。
- DOI:10.1016/j.jgg.2018.07.003
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Conley,ChristopherJ;Ozbek,Umut;Wang,Pei;Peng,Jie
- 通讯作者:Peng,Jie
A new method for constructing tumor specific gene co-expression networks based on samples with tumor purity heterogeneity.
- DOI:10.1093/bioinformatics/bty280
- 发表时间:2018-07-01
- 期刊:
- 影响因子:0
- 作者:Petralia F;Wang L;Peng J;Yan A;Zhu J;Wang P
- 通讯作者:Wang P
Mendelian randomization accounting for complex correlated horizontal pleiotropy while elucidating shared genetic etiology.
- DOI:10.1038/s41467-022-34164-1
- 发表时间:2022-10-30
- 期刊:
- 影响因子:16.6
- 作者:
- 通讯作者:
A robust two-sample transcriptome-wide Mendelian randomization method integrating GWAS with multi-tissue eQTL summary statistics.
- DOI:10.1002/gepi.22380
- 发表时间:2021-06
- 期刊:
- 影响因子:2.1
- 作者:Gleason, Kevin J.;Yang, Fan;Chen, Lin S.
- 通讯作者:Chen, Lin S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Chen其他文献
Lin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Chen', 18)}}的其他基金
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10162318 - 财政年份:2014
- 资助金额:
$ 36.42万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8612912 - 财政年份:2014
- 资助金额:
$ 36.42万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
9206508 - 财政年份:2014
- 资助金额:
$ 36.42万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8805844 - 财政年份:2014
- 资助金额:
$ 36.42万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8633443 - 财政年份:2013
- 资助金额:
$ 36.42万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8486199 - 财政年份:2013
- 资助金额:
$ 36.42万 - 项目类别:
相似海外基金
Understanding the biological processes and gene network pathways and their relationship with the host microbiota that directly affect complex fertility traits and embryo survival in beef cattle.
了解直接影响肉牛复杂生育性状和胚胎存活的生物过程和基因网络途径及其与宿主微生物群的关系。
- 批准号:
RGPIN-2017-05194 - 财政年份:2021
- 资助金额:
$ 36.42万 - 项目类别:
Discovery Grants Program - Individual
Understanding the biological processes and gene network pathways and their relationship with the host microbiota that directly affect complex fertility traits and embryo survival in beef cattle.
了解直接影响肉牛复杂生育性状和胚胎存活的生物过程和基因网络途径及其与宿主微生物群的关系。
- 批准号:
RGPIN-2017-05194 - 财政年份:2020
- 资助金额:
$ 36.42万 - 项目类别:
Discovery Grants Program - Individual
Permafrost degradation and greenhouse gas fluxes in a boreal forest: how the soil and biological processes affect the surface-atmosphere interactions
北方森林中的永久冻土退化和温室气体通量:土壤和生物过程如何影响地表-大气相互作用
- 批准号:
20H00640 - 财政年份:2020
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Identification of new targets that affect the biological width of the implant
识别影响植入物生物宽度的新目标
- 批准号:
19K19059 - 财政年份:2019
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the biological processes and gene network pathways and their relationship with the host microbiota that directly affect complex fertility traits and embryo survival in beef cattle.
了解直接影响肉牛复杂生育性状和胚胎存活的生物过程和基因网络途径及其与宿主微生物群的关系。
- 批准号:
RGPIN-2017-05194 - 财政年份:2019
- 资助金额:
$ 36.42万 - 项目类别:
Discovery Grants Program - Individual
Understanding the biological processes and gene network pathways and their relationship with the host microbiota that directly affect complex fertility traits and embryo survival in beef cattle.
了解直接影响肉牛复杂生育性状和胚胎存活的生物过程和基因网络途径及其与宿主微生物群的关系。
- 批准号:
RGPIN-2017-05194 - 财政年份:2018
- 资助金额:
$ 36.42万 - 项目类别:
Discovery Grants Program - Individual
Understanding the biological processes and gene network pathways and their relationship with the host microbiota that directly affect complex fertility traits and embryo survival in beef cattle.
了解直接影响肉牛复杂生育性状和胚胎存活的生物过程和基因网络途径及其与宿主微生物群的关系。
- 批准号:
RGPIN-2017-05194 - 财政年份:2017
- 资助金额:
$ 36.42万 - 项目类别:
Discovery Grants Program - Individual
The impact of biological sex and schizotypal symptoms on facial affect recognition in individuals at high genetic risk of developing schizophrenia.
生物性别和精神分裂症状对精神分裂症高遗传风险个体面部情感识别的影响。
- 批准号:
226880 - 财政年份:2011
- 资助金额:
$ 36.42万 - 项目类别:
Studentship Programs
Does landscape position affect biological and limnological variation in Artic ponds and lakes?
景观位置是否影响北极池塘和湖泊的生物和湖泊学变化?
- 批准号:
368248-2008 - 财政年份:2008
- 资助金额:
$ 36.42万 - 项目类别:
Northern Research Internships
Affect of the biological rhythm in mothers from pregnancy to postpartum on their progress of pregnancy to postpartum period
母亲孕期至产后生物节律对其孕期至产后进展的影响
- 批准号:
20390562 - 财政年份:2008
- 资助金额:
$ 36.42万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




