Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
基本信息
- 批准号:8612912
- 负责人:
- 金额:$ 32.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-02-15 至 2019-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressArchitectureAreaArsenicBangladeshBiologicalBlood PressureBody mass indexCardiovascular DiseasesCharacteristicsClinical TreatmentClinical TrialsCommunitiesComplexCoupledDataData SetDevelopmentDiseaseEnvironmentEnvironmental Risk FactorEpidemiologyEpigenetic ProcessEtiologyGene ExpressionGene Expression ProfileGenesGeneticGenetic StructuresGenetic VariationGenomeGenomicsGenotypeGoalsGroup StructureHealthHormonesHumanIndividualInvestigationJointsLicensingMeasuresMethodsModelingMultivariate AnalysisNetwork-basedNoiseOutcomePathway interactionsPatternPhenotypePortraitsPositioning AttributeProceduresQuantitative Trait LociResearchResearch PersonnelResourcesRisk FactorsRoleSamplingSignal TransductionSkin CancerStagingStatistical MethodsSystemTestingToxic effectTranscriptVariantWorkbasecomputerized toolscost effectivedata integrationflexibilityfunctional groupgene environment interactiongenetic variantgenome-widehuman diseaseimprovedinsightmembermethod developmentnon-genomicnovelnovel strategiesopen sourcepopulation basedpublic health relevancerare variantscreeningsoftware developmentstatisticstooltraittreatment effect
项目摘要
Summary
In order to understand the genomic architecture and etiology for complex human diseases, great efforts have
been extended in the past decades on research involving genome-wide genetic variation, transcriptome, and
other genomic information. To date, rich resources have been generated and most are made publicly available
after being analyzed for respective primary goals/hypotheses. Yet our understandings of human disease
mechanisms are just beginning, and those understandings would require both the identification of a cadre of
genetic and epigenetic risk factors, and the integration of key factors into a synergistic system. To best utilize
existing data and facilitate research on complex human diseases, the long-term objective of the proposed
research is to develop powerful and efficient statistical methods and computational tools for multivariate
analyses in mainly two areas: association studies with the integration of genomic and non-genomic information
in order to further identify genetic variation for complex diseases; and integrative genomic analyses that jointly
analyze genetic variation, transcriptome, and other information in the genome. In Aim 1, we propose novel and
powerful methods for gene-based association tests, for identification of genetic variation associated with
multivariate disease profiles, and for gene-based gene-environment interaction tests. In Aim 2, we develop
regularized methods for construction and comparison of eQTL networks. The later can also be used to reveal
important genetic variants and regulatory relationships through characterizing the changes in genetic
regulatory patterns across different phenotypic or environmental groups. Much of our proposed work is
motivated by and will be applied to a genetic-genomic study on arsenic toxicity, Gene-Environment Multi-
phenotype Study (GEMS). In Aim 3, we propose methods tailored for the characteristics of this data set; we will
also test novel scientific hypotheses on this unique and large arsenic toxicity study. Our proposal is cost-
effective as it analyzes existing data from GEMS while providing methods and tools for new research directions.
We anticipate that the proposed method development, when applied to and beyond the arsenic toxicity data,
would yield valuable insights on clinical trial treatment effects, and on disease etiology for several complex
diseases/traits, including but not limited to, arsenic-related skin cancer, cardiovascular diseases, hormone
measures, body mass index and blood pressure.
摘要
为了了解复杂人类疾病的基因组结构和病因学,人们付出了巨大的努力
在过去的几十年里,在涉及全基因组遗传变异、转录组和
其他基因组信息。到目前为止,已经产生了丰富的资源,大多数都是公开提供的
在分析了各自的主要目标/假设之后。然而,我们对人类疾病的理解
机制才刚刚开始,这些谅解将需要确定一名
遗传和表观遗传风险因素,以及将关键因素整合成一个协同系统。最大限度地利用
现有数据和促进对复杂人类疾病的研究,拟议的长期目标
研究目的是开发强大而高效的多元统计方法和计算工具
主要在两个领域进行分析:基因组和非基因组信息整合的关联性研究
为了进一步识别复杂疾病的遗传变异;以及联合
分析基因组中的遗传变异、转录组和其他信息。在目标1中,我们提出了新颖和
基于基因的关联测试的强大方法,用于识别与
多变量疾病概况,以及基于基因的基因-环境相互作用测试。在目标2中,我们开发了
EQTL网络构建与比较的正规化方法。后者也可以用来揭示
重要的遗传变异和调控关系通过表征基因的变化
不同表型或环境群体的监管模式。我们建议的大部分工作是
在砷毒性遗传基因组研究的推动下,基因-环境多学科
表型研究(GEMS)。在目标3中,我们提出了针对该数据集的特征量身定做的方法;我们将
也要在这项独特的大规模砷毒性研究中测试新的科学假设。我们的建议是成本-
有效,因为它分析来自宝石的现有数据,同时为新的研究方向提供方法和工具。
我们预计,拟议的方法开发,当应用于砷毒性数据时,
将对临床试验治疗效果和几种复杂疾病的病因学产生有价值的见解
疾病/特征,包括但不限于与砷有关的皮肤癌、心血管疾病、激素
测量、体重指数和血压。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Chen其他文献
Lin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Chen', 18)}}的其他基金
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10162318 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
9206508 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8805844 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10412060 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8633443 - 财政年份:2013
- 资助金额:
$ 32.23万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8486199 - 财政年份:2013
- 资助金额:
$ 32.23万 - 项目类别:
相似海外基金
Practical Study on Disaster Countermeasure Architecture Model by Sustainable Design in Asian Flood Area
亚洲洪泛区可持续设计防灾建筑模型实践研究
- 批准号:
17K00727 - 财政年份:2017
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Functional architecture of a face processing area in the common marmoset
普通狨猴面部处理区域的功能架构
- 批准号:
9764503 - 财政年份:2016
- 资助金额:
$ 32.23万 - 项目类别:
Heating and airconditioning by hypocausts in residential and representative architecture in Rome and Latium studies of a phenomenon of luxury in a favoured climatic area of the Roman Empire on the basis of selected examples.
罗马和拉齐奥的住宅和代表性建筑中的火烧供暖和空调根据选定的例子,研究了罗马帝国有利的气候地区的奢华现象。
- 批准号:
317469425 - 财政年份:2016
- 资助金额:
$ 32.23万 - 项目类别:
Research Grants
SBIR Phase II: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第二阶段:用于基于闪存的存储的面积和能源效率高、无错误层的低密度奇偶校验码解码器架构
- 批准号:
1632562 - 财政年份:2016
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
SBIR Phase I: Area and Energy Efficient Error Floor Free Low-Density Parity-Check Codes Decoder Architecture for Flash Based Storage
SBIR 第一阶段:用于基于闪存的存储的面积和能源效率高、无错误层低密度奇偶校验码解码器架构
- 批准号:
1520137 - 财政年份:2015
- 资助金额:
$ 32.23万 - 项目类别:
Standard Grant
A Study on The Spatial Setting and The Inhavitant's of The Flood Prevention Architecture in The Flood Area
洪泛区防洪建筑空间设置及居民生活研究
- 批准号:
26420620 - 财政年份:2014
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2011
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
A FUNDAMENTAL STUDY ON UTILIZATION OF THE POST-WAR ARCHITECTURE AS URBAN REGENERATION METHOD, A case of the central area of Osaka city
战后建筑作为城市更新方法的基础研究——以大阪市中心区为例
- 批准号:
22760469 - 财政年份:2010
- 资助金额:
$ 32.23万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2010
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual
Area and power efficient interconnect architecture for multi-bit processing on FPGAs
用于 FPGA 上多位处理的面积和功率高效互连架构
- 批准号:
327691-2007 - 财政年份:2009
- 资助金额:
$ 32.23万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




