Integrative multivariate association and genomic analyses

综合多变量关联和基因组分析

基本信息

  • 批准号:
    9206508
  • 负责人:
  • 金额:
    $ 31.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-02-15 至 2019-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): In order to understand the genomic architecture and etiology for complex human diseases, great efforts have been extended in the past decades on research involving genome-wide genetic variation, transcriptome, and other genomic information. To date, rich resources have been generated and most are made publicly available after being analyzed for respective primary goals/hypotheses. Yet our understandings of human disease mechanisms are just beginning, and those understandings would require both the identification of a cadre of genetic and epigenetic risk factors, and the integration of key factor into a synergistic system. To best utilize existing data and facilitate research on complex human diseases, the long-term objective of the proposed research is to develop powerful and efficient statistical methods and computational tools for multivariate analyses in mainly two areas: association studies with the integration of genomic and non-genomic information in order to further identify genetic variation for complex diseases; and integrative genomic analyses that jointly analyze genetic variation, transcriptome, and other information in the genome. In Aim 1, we propose novel and powerful methods for gene-based association tests, for identification of genetic variation associated with multivariate disease profiles, and for gene-based gene-environment interaction tests. In Aim 2, we develop regularized methods for construction and comparison of eQTL networks. The later can also be used to reveal important genetic variants and regulatory relationships through characterizing the changes in genetic regulatory patterns across different phenotypic or environmental groups. Much of our proposed work is motivated by and will be applied to a genetic-genomic study on arsenic toxicity, Gene-Environment Multi- phenotype Study (GEMS). In Aim 3, we propose methods tailored for the characteristics of this data set; we will also test novel scientific hypotheses on this unique and large arsenic toxicity study. Our proposal is cost- effective as it analyzes existing data from GEMS while providing methods and tools for new research directions. We anticipate that the proposed method development, when applied to and beyond the arsenic toxicity data, would yield valuable insights on clinical trial treatment effects, and on disease etiology for several complex diseases/traits, including but not limited to, arsenic-related skin cancer, cardiovascular diseases hormone measures, body mass index and blood pressure.
描述(由申请人提供):为了了解复杂人类疾病的基因组结构和病因,在过去几十年中,在涉及全基因组遗传变异、转录组和其他基因组信息的研究方面做出了巨大努力。迄今为止,已经产生了丰富的资源,并且大多数在针对各自的主要目标/假设进行分析后公开提供。然而,我们对人类疾病机制的理解才刚刚开始,这些理解需要识别遗传和表观遗传风险因素,并将关键因素整合到协同系统中。为了充分利用现有数据和促进对复杂人类疾病的研究,拟议研究的长期目标是开发强大而有效的统计方法和计算工具,用于主要两个领域的多变量分析:整合基因组和非基因组信息的关联研究,以进一步确定复杂疾病的遗传变异;以及综合基因组分析,其共同分析基因组中的遗传变异、转录组和其他信息。在目标1中,我们提出了新的和强大的方法,用于基于基因的关联测试,用于识别与多变量疾病谱相关的遗传变异,以及用于基于基因的基因-环境相互作用测试。在目标2中,我们开发了用于构建和比较eQTL网络的正则化方法。后者也可以用来揭示重要的遗传变异和调控关系,通过表征在不同的表型或环境群体的遗传调控模式的变化。本论文的大部分工作是基于砷毒性的基因-基因组研究,即基因-环境多表型研究(GEMS)。在目标3中,我们提出了针对该数据集的特点量身定制的方法;我们还将在这个独特的大型砷毒性研究中测试新的科学假设。我们的建议是具有成本效益的,因为它分析了现有的数据,从GEMS,同时提供新的研究方向的方法和工具。我们预计,所提出的方法开发,当应用于砷毒性数据和超越砷毒性数据时,将产生对临床试验治疗效果的有价值的见解,以及对几种复杂疾病/特征的疾病病因学的见解,包括但不限于砷相关皮肤癌、心血管疾病激素测量、体重指数和血压。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lin Chen其他文献

Lin Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lin Chen', 18)}}的其他基金

Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
  • 批准号:
    10162318
  • 财政年份:
    2014
  • 资助金额:
    $ 31.34万
  • 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
  • 批准号:
    8612912
  • 财政年份:
    2014
  • 资助金额:
    $ 31.34万
  • 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
  • 批准号:
    8805844
  • 财政年份:
    2014
  • 资助金额:
    $ 31.34万
  • 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
  • 批准号:
    10412060
  • 财政年份:
    2014
  • 资助金额:
    $ 31.34万
  • 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
  • 批准号:
    8633443
  • 财政年份:
    2013
  • 资助金额:
    $ 31.34万
  • 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
  • 批准号:
    8486199
  • 财政年份:
    2013
  • 资助金额:
    $ 31.34万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 31.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 31.34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了