Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
基本信息
- 批准号:8486199
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-03-07 至 2015-02-28
- 项目状态:已结题
- 来源:
- 关键词:BiologicalCancer EtiologyCatalogingCatalogsComplexDataDiseaseDisease PathwayEnvironmental Risk FactorEquilibriumGenesGeneticGenomeGenomicsHumanIntercistronic RegionJointsJunk DNAKnowledgeLocationMalignant NeoplasmsMethodsModelingMultivariate AnalysisNational Human Genome Research InstitutePathway interactionsPhenotypePopulationPredispositionPublishingResearchRiskSamplingSourceStatistical MethodsStructureTestingTimeWorkbasecase controlcostdesignflexibilitygene environment interactiongene interactiongenetic analysisgenetic risk factorgenome wide association studygenome-widehuman diseaseimprovedinsightmethod developmentnon-geneticpublic health relevancetrait
项目摘要
DESCRIPTION (provided by applicant): The objective of the proposed research is to develop multivariate statistical methods for joint analyses of functionally related biological information n association and interaction using existing GWA data. Specifically, we propose to develop methods for joint analyzing multiple SNPs in a SNP set (e.g. a gene), and methods for jointly analyzing multivariate secondary phenotypes with potential ignorable and non-ignorable missing data. We further propose to develop methods for genome-wide gene-gene interaction analysis, in which groups of between- gene SNP-SNP correlations will be analyzed together to detect interactions. In addition, we propose to integrate a priori knowledge in our genome-wide association or interaction analyses; and we group sets of predictors by a priori knowledge and design flexible regularized regression approaches to constrain the parameter estimation and achieve efficiency. The proposed research is motivated by opportunities and needs in GWA studies, and much of our proposed work can be cost-efficiently implemented with publicly accessible GWA data for different cancers to improve our understanding of the genetic basis and disease etiology of cancer.
描述(由申请人提供):拟议研究的目的是开发多元统计方法,使用现有的 GWA 数据对功能相关的生物信息、关联和相互作用进行联合分析。具体来说,我们建议开发联合分析 SNP 集中(例如基因)中的多个 SNP 的方法,以及联合分析具有潜在可忽略和不可忽略缺失数据的多元次级表型的方法。我们进一步建议开发全基因组基因间相互作用分析的方法,其中基因间 SNP-SNP 相关性组将被一起分析以检测相互作用。此外,我们建议将先验知识整合到我们的全基因组关联或相互作用分析中;我们通过先验知识对预测变量集进行分组,并设计灵活的正则化回归方法来约束参数估计并实现效率。拟议的研究是由 GWA 研究的机会和需求推动的,我们提出的大部分工作都可以利用公开的不同癌症的 GWA 数据来经济有效地实施,以提高我们对癌症遗传基础和疾病病因学的理解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lin Chen其他文献
Lin Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lin Chen', 18)}}的其他基金
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10162318 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8612912 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
9206508 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
8805844 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Integrative multivariate association and genomic analyses
综合多变量关联和基因组分析
- 批准号:
10412060 - 财政年份:2014
- 资助金额:
$ 7.9万 - 项目类别:
Multivariate functional analysis of the genetic basis of cancer
癌症遗传基础的多变量功能分析
- 批准号:
8633443 - 财政年份:2013
- 资助金额:
$ 7.9万 - 项目类别:
相似海外基金
Uncovering colorectal cancer etiology and biology by integrating proteomics with other omics data
通过将蛋白质组学与其他组学数据相结合,揭示结直肠癌的病因学和生物学
- 批准号:
10585424 - 财政年份:2023
- 资助金额:
$ 7.9万 - 项目类别:
Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans
发现因果蛋白标记物以提高非洲人和欧洲人对前列腺癌病因的了解和风险预测
- 批准号:
10446594 - 财政年份:2022
- 资助金额:
$ 7.9万 - 项目类别:
Uncovering causal protein markers to improve prostate cancer etiology understanding and risk prediction in Africans and Europeans
发现因果蛋白标记物以提高非洲人和欧洲人对前列腺癌病因的了解和风险预测
- 批准号:
10647719 - 财政年份:2022
- 资助金额:
$ 7.9万 - 项目类别:
Elucidating Lung Cancer Etiology Among Asian American Female Never Smokers
阐明从不吸烟的亚裔美国女性肺癌病因
- 批准号:
10307055 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Uncovering Roles of Metabolites in Colorectal Cancer Etiology
揭示代谢物在结直肠癌病因学中的作用
- 批准号:
10224955 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Uncovering Roles of Metabolites in Colorectal Cancer Etiology
揭示代谢物在结直肠癌病因学中的作用
- 批准号:
10201868 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Elucidating Lung Cancer Etiology Among Asian American Female Never Smokers
阐明从不吸烟的亚裔美国女性肺癌病因
- 批准号:
10527364 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Life course body fatness and physical activity, and ovarian cancer etiology
生命历程身体脂肪和体力活动以及卵巢癌病因
- 批准号:
435914 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Operating Grants
Elucidating Lung Cancer Etiology Among Asian American Female Never Smokers
阐明从不吸烟的亚裔美国女性肺癌病因
- 批准号:
10093129 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Elucidating Lung Cancer Etiology Among Asian American Female Never Smokers
阐明从不吸烟的亚裔美国女性肺癌病因
- 批准号:
9885673 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:














{{item.name}}会员




