Simultaneous high-throughput functional, transcriptomic and connectivity profiling using FUNseq
使用 FUNseq 同时进行高通量功能、转录组和连接分析
基本信息
- 批准号:10413650
- 负责人:
- 金额:$ 381.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-05-01 至 2025-04-30
- 项目状态:未结题
- 来源:
- 关键词:AlgorithmsAnatomyAnimalsAreaAxonBRAIN initiativeBar CodesBehaviorBig DataBrainCellsCognitionComplexDataDevelopmentDimensionsDiseaseDistantElectron MicroscopyFingerprintFunctional ImagingGeneticGoalsIn SituIn VitroIndividualLinkMachine LearningMapsMeasurementMeasuresMental disordersMethodologyMethodsMultiplexed Analysis of Projections by SequencingMusNeocortexNeuronsNeurosciencesPathologicPatternPhysiologicalPopulationPropertyRNAResolutionRoleSiliconSilicon DioxideSourceStructureTechniquesTechnologyTimeVisual CortexWorkanalysis pipelinearea striataawakecell typecostcost effectivedeep learningdeep learning modeldensitydesignexperimental analysisexperimental studyin vivomachine learning methodmultimodalitymultiphoton imagingneural circuitnovelpatch sequencingpredictive modelingreconstructionrelating to nervous systemscaffoldsingle cell sequencingsingle-cell RNA sequencingtooltranscriptometranscriptome sequencingtranscriptomics
项目摘要
Project Summary
Recent advances in technology driven by the BRAIN Initiative have yielded new methods for characterizing the ac-
tivity, transcriptome, and microscale anatomy of neurons throughout the brain, and have increased the throughput
of these techniques by orders of magnitude. It is currently possible to record the simultaneous activity of popu-
lations of neurons on the order of tens of thousands of neurons in awake behaving animals in vivo using large
field of view multiphoton imaging or high density silicon probes, and new machine learning methods are enabling
more comprehensive functional characterization than ever before. Transcriptomic profiling can be accomplished
at scales of tens or hundreds of thousands of neurons in vitro. Finally the microscale anatomy of axonal pro-
jections and connections across the brain can also be assessed in tens of thousands of neurons in the same
animal using dense electron microscopy reconstruction for local circuits, or (as we propose here) RNA barcoding
methods for local and long-range axonal projections. Each of these techniques on their own can provide im-
portant clues about the diversity of neurons and their organization into canonical circuits with specific functional,
transcriptomic, or axonal projection profiles. While these techniques are all being pushed forward independently,
they remain effectively siloed from each other, precluding multi-modal characterization of the same neurons in
the same animal. Developing a comprehensive pipeline to characterize transcriptomic, axonal projections and in
vivo functional fingerprints as we propose to do here would enable synergistic analyses of cell-type composition
across these multiple dimensions. Finally, because of the low cost and high throughput of this approach, experi-
ments using this novel pipeline could be repeated many times in different animals to answer pressing questions
about how the relationship between the function, structure, and transcriptome of neurons changes across devel-
opmental or disease states. In this proposal, we will leverage our team's combined expertise in in vivo functional
imaging and Machine Learning to characterize the complex functional properties of neurons in primary visual
cortex of the mouse, and novel sequencing techniques developed by PI Zador to combine transcriptomic profiling
with RNA barcoding to measure single-neuron projection patterns throughout the brain at axonal resolution.
项目摘要
由BRAIN计划驱动的技术的最新进展产生了表征交流的新方法,
整个大脑的神经元的活性,转录组和微观解剖,并增加了吞吐量
这些技术的数量级。目前,可以记录popu的同时活动,
在清醒行为的动物体内使用大的神经元,
视野多光子成像或高密度硅探针,以及新的机器学习方法,
比以往任何时候都更全面的功能表征。转录组学分析可以通过
在体外的数万或数十万个神经元的规模。最后,轴突前体的显微解剖,
大脑中的喷射和连接也可以在同一个神经元中的数万个神经元中进行评估。
动物使用密集电子显微镜重建局部电路,或(如我们在这里提出的)RNA条形码
局部和远程轴突投射的方法。这些技术中的每一种都可以提供IM-
关于神经元多样性及其组织成具有特定功能的规范电路的重要线索,
转录组或轴突投射轮廓。虽然这些技术都是独立推进的,
它们仍然有效地彼此孤立,排除了相同神经元的多模态表征,
同样的动物。开发一个全面的管道,以表征转录组,轴突投射和
我们在这里提出的体内功能指纹将能够协同分析细胞类型组成,
在这些多个维度上。最后,由于这种方法的低成本和高吞吐量,
使用这种新颖的管道可以在不同的动物身上重复多次,以回答紧迫的问题。
关于神经元的功能、结构和转录组之间的关系如何在发育过程中发生变化,
精神或疾病状态。在本提案中,我们将利用我们团队在体内功能性
成像和机器学习来表征初级视觉中神经元的复杂功能特性
小鼠皮质,以及PI Zador开发的联合收割机结合转录组学分析的新测序技术
用RNA条形码以轴突分辨率测量整个大脑的单神经元投射模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Tolias其他文献
Andreas Tolias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andreas Tolias', 18)}}的其他基金
BRAIN CONNECTS: Synaptic resolution whole-brain circuit mapping of molecularly defined cell types using a barcoded rabies virus
大脑连接:使用条形码狂犬病病毒对分子定义的细胞类型进行突触分辨率全脑电路图谱
- 批准号:
10672786 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
- 批准号:
9109046 - 财政年份:2013
- 资助金额:
$ 381.62万 - 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
- 批准号:
8743292 - 财政年份:2013
- 资助金额:
$ 381.62万 - 项目类别:
A MOLECULAR CODE FOR CONNECTIVITY IN THE NEOCORTEX
新皮质连接的分子密码
- 批准号:
8639755 - 财政年份:2013
- 资助金额:
$ 381.62万 - 项目类别:
Mechanisms of Perceptual Learning in Primary Visual Cortex
初级视觉皮层知觉学习的机制
- 批准号:
8139747 - 财政年份:2008
- 资助金额:
$ 381.62万 - 项目类别:
Mechanisms of Perceptual Learning in Primary Visual Cortex
初级视觉皮层知觉学习的机制
- 批准号:
7533774 - 财政年份:2008
- 资助金额:
$ 381.62万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 381.62万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 381.62万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 381.62万 - 项目类别:
Studentship